Lior Silberman's Math 223: Problem Set 4 (due 9/2/2022)

Practice problems (recommended, but do not submit)

Section 2.1, Problems 1-3,5,9,10-12,28-29 Section 2.2, Problems 1-3.

Calculations with linear maps

M1. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 2x_1 \end{pmatrix}$.

- (a) Find bases for Ker T, Im T and check that the dimension formula holds.
- (b) Find the matrix for *T* with respect to the bases $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ of \mathbb{R}^2 and $\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ of \mathbb{R}^3 .

M2. Let
$$T : \mathbb{R}^5 \to \mathbb{R}^3$$
 be the linear map $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 \\ x_1 - x_2 + x_3 - x_5 \\ -3x_1 - x_3 + x_5 \end{pmatrix}$.

- (a) Find bases for Ker T, Im T (use problem 1) and check that the dimension formula holds.
- (b) Find the matrix for T with respect to the standard bases of \mathbb{R}^5 , \mathbb{R}^3 .
- (c) Find the matrix for *T* with respect to the standard basis of \mathbb{R}^5 and the basis $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$

of \mathbb{R}^3 .

More linear maps

- 1. Let $D: \mathbb{R}[x]^{\leq n} \to \mathbb{R}[x]^{\leq n}$ be the differentiation map.
 - (a) Find KerD and its dimension.
 - (b) Find Im*D*.

Fix a number $a \neq 0$ and let $T: \mathbb{R}[x]^{\leq n} \to \mathbb{R}[x]^{\leq n}$ be the map $D + Z_a$ (that is, $Tp = \frac{dp}{dx} + a \cdot p$ for any polynomial *p*).

- (c) Show that T maps the basis of monomials to a set of n+1 polynomials of distinct degrees.
- (*d) Show that $\operatorname{Im} T = \mathbb{R}[x]^{\leq n}$.
- 2. Let *V* be a vector space. For $A, B \in \text{Hom}(V, V)$ define $A \cdot B = A \circ B$; in class we checked that $A \cdot B \in A \circ B$. Hom(V,V).

RMK In PS3 Problem C2 we checked that Hom(V, V) is a vector space under pointwise addition.

- (a) Check that the multiplication we define is associative: (AB)C = A(BC) (hint: evaluate both sides at $v \in V$), and that the identity map Id_V is a unit for it.
- (b) Check that this multiplication is distributive over addition: (A + B)C = AC + BC, C(A + B) =CA + BC.

DEF For any two linear maps $A, B \in \text{Hom}(V, V)$ their *commutator* is the linear map [A, B] = AB - BA. (c) Show that $A \cdot B = B \cdot A$ iff [A, B] = 0 (hence the name "commutator").

- PRAC For a function $a \in C^{\infty}(\mathbb{R})$ write M_a for the operator of multiplication by a: $(M_a f)(x) =$ a(x)f(x). Show that $M_a: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ is a linear map.
- (d) Let $a \in C^{\infty}(\mathbb{R})$. Find a function $b \in C^{\infty}(\mathbb{R})$ so that $[D, M_a] = M_b$ as linear maps on $C^{\infty}(\mathbb{R})$.

Surjective and injective maps; Invertibility

DEFINITION. Let $T: U \to V$ be a linear map. We say that T is *injective* (a monomorphism) if $T\underline{u} = T\underline{u}'$ implies $\underline{u} = \underline{u}'$ and surjective (an epimorphism) if $\operatorname{Im} T = V$. If a linear map $T: U \to V$ is surjective and injective we say it is an *isomorphism* (of vector spaces). We say that U, V are *isomorphic* if there is an isomorphism between them.

- 3. Show that *T* is injective if and only if Ker $T = \{\underline{0}\}$. (Hint: to compare two vectors consider their difference)
- 4. Suppose that T: U → V is an isomorphism of vector spaces, and define a function T⁻¹: V → U as follows: T⁻¹<u>v</u> is that vector <u>u</u> such that T<u>u</u> = <u>v</u>.
 (a) Explain why <u>u</u> exists and why it is unique (that is, check that T⁻¹ is a well-defined function).
 - (*b) Show that T^{-1} is a linear function.

Extra credit: categorical thinking

- C1. Let $T \in \text{Hom}(U, V)$, $S \in \text{Hom}(V, U)$ be linear maps.
 - (a) Suppose $TS = Id_V$. Show that S is injective and T is surjective.
 - (b) (Converse of 4(b)) Suppose that $TS = Id_V$ and $ST = Id_U$. Show that T is an isomorphism and that $S = T^{-1}$.
- C2. Let $T \in \text{Hom}(U, V)$.
 - (a) Show that *T* is injective if and only if for every vector space *Z* and every two linear maps $f_1, f_2: Z \to U$ if $T \circ f_1 = T \circ f_2$ then $f_1 = f_2$.
 - (**b) Show that *T* is surjective if and only if for every vector space *Z* and every two linear maps $f_1, f_2: V \to Z$ if $f_1 \circ T = f_2 \circ T$ then $f_1 = f_2$.