Lior Silberman's Math 223: Problem Set 4 (due 9/2/2022)
 Practice problems (recommended, but do not submit)

Section 2.1, Problems 1-3,5,9,10-12,28-29
Section 2.2, Problems 1-3.

Calculations with linear maps

M1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear map $T\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}x_{1}+x_{2} \\ x_{1}-x_{2} \\ 2 x_{1}\end{array}\right)$.
(a) Find bases for $\operatorname{Ker} T, \operatorname{Im} T$ and check that the dimension formula holds.
(b) Find the matrix for T with respect to the bases $\left\{\binom{1}{1},\binom{1}{-1}\right\}$ of \mathbb{R}^{2} and $\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ of \mathbb{R}^{3}.

M2. Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be the linear map T

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
2 x_{1}+x_{2} \\
x_{1}-x_{2}+x_{3}-x_{5} \\
-3 x_{1}-x_{3}+x_{5}
\end{array}\right)
$$

(a) Find bases for $\operatorname{Ker} T, \operatorname{Im} T$ (use problem 1) and check that the dimension formula holds.
(b) Find the matrix for T with respect to the standard bases of $\mathbb{R}^{5}, \mathbb{R}^{3}$.
(c) Find the matrix for T with respect to the standard basis of \mathbb{R}^{5} and the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ of \mathbb{R}^{3}.

More linear maps

1. Let $D: \mathbb{R}[x]^{\leq n} \rightarrow \mathbb{R}[x]^{\leq n}$ be the differentiation map.
(a) Find $\operatorname{Ker} D$ and its dimension.
(b) Find $\operatorname{Im} D$.

Fix a number $a \neq 0$ and let $T: \mathbb{R}[x]^{\leq n} \rightarrow \mathbb{R}[x]^{\leq n}$ be the map $D+Z_{a}$ (that is, $T p=\frac{d p}{d x}+a \cdot p$ for any polynomial p).
(c) Show that T maps the basis of monomials to a set of $n+1$ polynomials of distinct degrees.
(*d) Show that $\operatorname{Im} T=\mathbb{R}[x]^{\leq n}$.
2. Let V be a vector space. For $A, B \in \operatorname{Hom}(V, V)$ define $A \cdot B=A \circ B$; in class we checked that $A \cdot B \in$ $\operatorname{Hom}(V, V)$.
RMK In PS3 Problem C2 we checked that $\operatorname{Hom}(V, V)$ is a vector space under pointwise addition.
(a) Check that the multiplication we define is associative: $(A B) C=A(B C)$ (hint: evaluate both sides at $\underline{v} \in V$), and that the identity map Id_{V} is a unit for it.
(b) Check that this multiplication is distributive over addition: $(A+B) C=A C+B C, C(A+B)=$ $C A+B C$.
DEF For any two linear maps $A, B \in \operatorname{Hom}(V, V)$ their commutator is the linear map $[A, B]=A B-B A$.
(c) Show that $A \cdot B=B \cdot A$ iff $[A, B]=0$ (hence the name "commutator").

PRAC For a function $a \in C^{\infty}(\mathbb{R})$ write M_{a} for the operator of multiplication by a : $\left(M_{a} f\right)(x)=$ $a(x) f(x)$. Show that $M_{a}: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ is a linear map.
(d) Let $a \in C^{\infty}(\mathbb{R})$. Find a function $b \in C^{\infty}(\mathbb{R})$ so that $\left[D, M_{a}\right]=M_{b}$ as linear maps on $C^{\infty}(\mathbb{R})$.

Surjective and injective maps; Invertibility

DEfinition. Let $T: U \rightarrow V$ be a linear map. We say that T is injective (a monomorphism) if $T \underline{u}=$ $T \underline{u}^{\prime}$ implies $\underline{u}=\underline{u}^{\prime}$ and surjective (an epimorphism) if $\operatorname{Im} T=V$. If a linear map $T: U \rightarrow V$ is surjective and injective we say it is an isomorphism (of vector spaces). We say that U, V are isomorphic if there is an isomorphism between them.
3. Show that T is injective if and only if $\operatorname{Ker} T=\{\underline{0}\}$. (Hint: to compare two vectors consider their difference)
4. Suppose that $T: U \rightarrow V$ is an isomorphism of vector spaces, and define a function $T^{-1}: V \rightarrow U$ as follows: $T^{-1} \underline{v}$ is that vector \underline{u} such that $T \underline{u}=\underline{v}$.
(a) Explain why \underline{u} exists and why it is unique (that is, check that T^{-1} is a well-defined function).
(*b) Show that T^{-1} is a linear function.

Extra credit: categorical thinking

C1. Let $T \in \operatorname{Hom}(U, V), S \in \operatorname{Hom}(V, U)$ be linear maps.
(a) Suppose $T S=\operatorname{Id}_{V}$. Show that S is injective and T is surjective.
(b) (Converse of 4(b)) Suppose that $T S=\operatorname{Id}_{V}$ and $S T=\operatorname{Id}_{U}$. Show that T is an isomorphism and that $S=T^{-1}$.

C2. Let $T \in \operatorname{Hom}(U, V)$.
(a) Show that T is injective if and only if for every vector space Z and every two linear maps $f_{1}, f_{2}: Z \rightarrow U$ if $T \circ f_{1}=T \circ f_{2}$ then $f_{1}=f_{2}$.
(**b) Show that T is surjective if and only if for every vector space Z and every two linear maps $f_{1}, f_{2}: V \rightarrow Z$ if $f_{1} \circ T=f_{2} \circ T$ then $f_{1}=f_{2}$.

