Lior Silberman's Math 223: Problem Set 3 (due 2/2/2022)

Practice problems (recommended, but do not submit)

Section 1.6, Problems 1 (except (g)), 2-5, 7,8, 11, 12, 22*, 24*.
M1. (§1.6 E8)Let $W=\left\{\underline{x} \in \mathbb{R}^{5} \mid \sum_{i=1}^{5} x_{i}=0\right\}$ be the set of vectors in \mathbb{R}^{5} whose co-ordinates sum to zero. It is a subspace (but you don't have to check this). The following 8 vectors span W (you don't have to check that either). Find a subset of them which forms a basis for $W . \underline{u}_{1}=(2,-3,4,-5,2)$, $\underline{u}_{2}=(-6,9,-12,15,-6), \underline{u}_{3}=(3,-2,7,-9,1), \underline{u}_{4}=(2,-8,2,-2,6), \underline{u}_{5}=(-1,1,2,1,-3), \underline{u}_{6}=$ $(0,-3,-18,9,12), \underline{u}_{7}=(1,0,-2,3,-2), \underline{u}_{8}=(2,-1,1,-9,7)$.

M2. Find a basis for the subspace $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}+3 x_{2}-x_{3}=0\right\}$ of \mathbb{R}^{4}. What is the dimension?

Basis and dimension

1. Recall the space $M_{n}(\mathbb{R})$ of $n \times n$ matrices: each element is a square $n \times n$ array of real numbers, with addition and scalar multiplication entrywise. For $A \in M_{n}(\mathbb{R})$ define its transpose A^{T} by reflecting along the main diagonal: $\left(A^{T}\right)_{i j}=A_{j i}$. For example $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)^{T}=\left(\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right)$. Call a matrix A symmetric if $A^{T}=A$ (for example $\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$ is symmetric but $\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ isn't). The set of symmetric matrices $S \subset M_{n}(\mathbb{R})$ is a subspace (we'll prove this later). Find a basis for this space and compute its dimension.
*2. Let $\mathbb{R}(x)$ be the space of functions of the form $\frac{f}{g}$ where $f, g \in \mathbb{R}[x]$ are polynomials such that $g \neq 0$. $\mathbb{R}(x)$ is called "the field of rational functions in one variable, and has the same relation to the ring of polynomials $\mathbb{R}[x]$ that the rational numbers \mathbb{Q} have to the ring of integers \mathbb{Z}. We will consider $\mathbb{R}(x)$ as a real vector space.
(a) Show that $\frac{1}{1-x} \in \mathbb{R}(x)$ is linearly independent of the set $\left\{x^{k}\right\}_{k=0}^{\infty} \subset \mathbb{R}(x)$.

RMK It's true that $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$ holds on the interval $(-1,1)$, but don't forget that the summation symbol on the left does not stand for repeated addition. Rather, it stands for a kind of limit.
(b) Show that the subset $\left\{\frac{1}{x-a}\right\}_{a \in \mathbb{R}} \subset \mathbb{R}(x)$ is linearly independent.

RMK The vector space $\mathbb{R}[x]$ has countable dimension, but by part (b) the dimension of $\mathbb{R}(x)$ as a real vector space is at least the cardinality of the continuum. In fact there is equality, because the cardinality of all of $\mathbb{R}(x)$ is that of the continuum.

Linear Functionals

Fix a vector space V. A linear functional on V is a map $\varphi: V \rightarrow \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $\underline{u}, \underline{v} \in V, \varphi(a \underline{v}+b \underline{u})=a \varphi(\underline{v})+b \varphi(\underline{u})$. Let $V^{*} \stackrel{\text { def }}{=}\{\varphi: V \rightarrow \mathbb{R} \mid \varphi$ is a linear functional $\}$ be the set of linear functionals on V (V^{*} is the vector space dual to V, in short the dual space).
3. (The basic examples)
(a) Show that $\varphi\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=5 x-y-4 z$ defines a linear functional on \mathbb{R}^{3}.
(b) Let φ be a linear functional on \mathbb{R}^{2}. Show that $\varphi\left(\binom{x}{y}\right)=x \cdot \varphi\left(\binom{1}{0}\right)+y \cdot \varphi\left(\binom{0}{1}\right)$, and conclude that every linear functional on \mathbb{R}^{2} is of the form $\varphi\left(\binom{x}{y}\right)=a x+b y$ for some $a, b \in \mathbb{R}$.
SUPP Construct an identification of $\left(\mathbb{R}^{n}\right)^{*}$ with \mathbb{R}^{n}, generalizing part (b).
(c) Fix a set X and a point $x \in X$. Define $e_{x}: \mathbb{R}^{X} \rightarrow \mathbb{R}$ by $e_{x}(f)=f(x)$ (this is called the "evaluation map"). Show that e_{x} is a linear functional.
4. Show that V^{*} is a subspace of \mathbb{R}^{V}, hence a vector space.

A Linear Transformation

In this problem our notation follows conventions from physics. Thus v will be a numerical parameter rather than a vector, and we write the coordinates of a vector in \mathbb{R}^{2} as $\binom{x}{t}$ rather than $\binom{x_{1}}{x_{2}}$.
5. In the course of his researches on electromagnetism, Henri Poincare wrote down the following map $L_{v}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which he called the "Lorentz transformation":

$$
L_{v}\binom{x}{t} \stackrel{\text { def }}{=} \gamma_{v} \cdot\binom{x-v t}{t-v x} .
$$

Here v is a real parameter such that $|v|<1$ and γ_{v} is also a number, defined by $\gamma_{v}=\left(1-v^{2}\right)^{-1 / 2}$.
(a) Suppose $v=0.6$ so that $\gamma_{v}=\left(1-0.6^{2}\right)^{-1 / 2}=1.25$. Calculate $L_{v}\binom{3}{2}, L_{v}\binom{-1}{1}$ and $L_{v}\binom{2}{3}$. Check that $L_{v}\binom{2}{3}=L_{v}\binom{3}{2}+L_{v}\binom{-1}{1}$.
(b) Show that L_{v} is a linear transformation.
(c) ("Relativistic addition of velocities") Let $v, v^{\prime} \in(-1,1)$ be two parameters. Show that $L_{v} \circ L_{v^{\prime}}=$ L_{u} for $u=\frac{v+v^{\prime}}{1+v v^{\prime}}$. It is a fact that if $v, v^{\prime} \in(-1,1)$ then $\frac{v+v^{\prime}}{1+v v^{\prime}} \in(-1,1)$ as well.
Hint: Start by showing $\gamma_{v} \gamma_{v^{\prime}}=\frac{\gamma_{u}}{1+v v^{\prime}}$.
RMK If $g: A \rightarrow B$ and $f: B \rightarrow C$ are functions then $f \circ g$ denotes their composition, the function $f \circ g: A \rightarrow C$ such that $(f \circ g)(a)=f(g(a))$ for all $a \in A$.

Extra credit

C1. Let V be a vector space and let $W_{1}, W_{2} \subset V$ be finite-dimensional subspaces.
(a) Show that $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq \operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
(**b) Show that $\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$.
Hint Let A, B be finite sets. Then the "inclusion-exclusion" formula states $\# A+\# B=\#(A \cup B)+$ $\#(A \cap B)$

C2. For a vector space V and a set X endow V^{X} with the structure of a vector space (check the axioms!). When U, V are vector space show that the set of linear maps $\operatorname{Hom}_{\mathbb{R}}(U, V)=\{f: U \rightarrow V \mid f$ is linear $\} \subset$ V^{U} is a subspace.

C3. (a) Let V be a vector space of dimension r over the finite field \mathbb{F}_{p}. Show that $\# V=p^{r}$.
(b) Combine problems C2,C3 from PS1 and part (a) to show that every finite field has p^{r} elements for some prime p and positive integer r.

Supplementary problems

A. Let V be a vector space and let $\varphi \in V^{*}$ be non-zero.
(a) Show that $\operatorname{Ker} \varphi \stackrel{\text { def }}{=}\{\underline{v} \in V \mid \varphi(\underline{v})=0\}$ is a subspace.
(*) Show that there is $\underline{v} \in V$ satisfying $\varphi(\underline{v})=1$.
$\left({ }^{*} \mathrm{c}\right.$) Let B be a basis of $\operatorname{Ker} \varphi$, and let $\underline{v} \in V$ be as in part (b). Show that $B \cup\{\underline{v}\}$ is a basis of V.
RMK If V is finite-dimensional this shows: $\operatorname{dim} V=\operatorname{dim} \operatorname{Ker} \varphi+1$. In general we say that $\operatorname{Ker} \varphi$ is of codimension 1 .
B. Let V be a vector space, W a subspace. Let $B \subset W$ be a basis for W and let $C \subset V$ be disjoint from B and such that $B \cup C$ is a basis for V (that is, we extend B until we get a basis for V).
(a) Show that $\{\underline{v}+W\}_{v \in C}$ is a basis for the quotient vector space $V / W(V / W$ is defined in the supplement to PS2).
(b) Show that $\operatorname{dim} W+\operatorname{dim}(V / W)=\operatorname{dim} V$.

The following problem requires some background in set theory.
C. Let V be a vector space, and let B, C be a bases of V.
(a) Suppose one of B, C is finite, Show that the other is finite and that they have the same size.

- We may therefore assume both B, C are infinite.
(b) For a finite subset $A \subset B$ show that $C \cap \operatorname{Span}(A)$ is finite.
- Let $\mathcal{F}_{B}, \mathcal{F}_{C}$ be the sets of finite subsets of B, C respectively, and let $f: \mathcal{F}_{B} \rightarrow \mathcal{F}_{C}$ be the function $f(A)=C \cap \operatorname{Span}(A)$.
(c) Show that the image of f covers C (in symbols, $\bigcup f\left(\mathcal{F}_{B}\right)=C$).
(d) Show that the cardinality of the image of f is at least that of C.
(e) Show that $|B| \geq|C|$. Conclude that $|B|=|C|$, in other words that infinite-dimensional vector spaces also have well-defined dimensions.

