Math 100 - SOLUTIONS TO WORKSHEET 21 ANTIDERIVATIVES

1. Warmup: inverse operations

(1) (Multiplication)

(a) Calculate: $7 \times 8 =$

(b) Find (some) a, b such that ab = 15.

(2) (Trig functions)

(a) Calculate: $\sin \frac{\pi}{3} =$

(b) Find all θ such that $\sin \theta = 1$.

Solution: $\frac{\pi}{2} + 2\pi \mathbb{Z}$ or $\left\{\frac{\pi}{2} + 2\pi k\right\}_{k \in \mathbb{Z}}$.

(3) Simple differentiation

(a) Find one f such that f'(x) = 1.

Solution: f(x) = x works.

(b) Find all such f.

Solution: f(x) = x + C where C is an arbitrary constant.

(c) Find the f such that f(7) = 3.

Solution: We need 7 + C = 3 so C = -4 and hence |f(x)| = x - 4

2. Antidifferentiation by massaging

(4) Find f such that $f'(x) = 2x^3$.

Solution: We know the derivative of x^4 is $4x^3$, so the derivative of $\frac{1}{2}x^4$ is $2x^3$ as desired.

(5) Find f such that $f'(x) = -\frac{1}{x}$.

Solution: We know the derivative of $\log |x|$ is $\frac{1}{x}$, so the derivative of $|-\log |x|$ is $-\frac{1}{x}$.

(6) Find all f such that $f'(x) = \cos 3x$.

Solution: The derivative of $\sin x$ is $\cos x$, so the derivative of $\sin 3x$ is $3\cos 3x$ and the derivative of $\left| \frac{1}{3} \sin 3x \right|$ is $\cos 3x$.

3. Combinations

(7) (Final, 2015) Find a function f(x) such that $f'(x) = \sin x + \frac{2}{\sqrt{x}}$ and $f(\pi) = 0$. Solution: We know $(\cos x)' = -\sin x$. Also, $(x^{1/2})' = \frac{1}{2\sqrt{x}}$. The general antiderivative is therefore

$$f(x) = -\cos x + 4\sqrt{x} + C.$$

To determine the constant we evaluate at π :

$$0 = f(\pi) = -\cos \pi + 4\sqrt{\pi} + C = 1 + 4\sqrt{\pi} + C.$$

We therefore have $C = -1 - 4\sqrt{\pi}$ and

$$f(x) = -\cos x + 4\sqrt{x} + 1 - 4\sqrt{\pi}.$$

(8) (Final, 2016) Find the general antiderivative of $f(x) = e^{2x+3}$.

Solution: Write $f(x) = e^3 e^{2x}$. Since the derivative of e^x is e^x the derivative of e^{2x} is $2e^{2x}$ and $f(x) = \frac{1}{2}e^3e^{2x} + C$

(9) Find f such that $f'(x) = \frac{6x^4 - 2x - 2}{x^2}$.

Solution: We have $\frac{6x^4 - 2x - 2}{x^2} = 6x^2 - \frac{2}{x} - \frac{2}{x^2}$. Since the derivative of x^3 is $3x^2$, since the derivative of $\log |x|$ is $\frac{1}{x}$ and since the derivative of $\frac{1}{x}$ is $-\frac{1}{x^2}$ we may use

$$f(x) = 2x^3 - 2\log|x| + \frac{2}{x}.$$

(10) Find f such that $f'(x) = 2x^{1/3} - x^{-2/3}$ and f(1000) = 5.

Solution: Since $(x^{4/3})' = \frac{4}{3}x^{1/3}$ and $(x^{1/3})' = \frac{1}{3}x^{-2/3}$ the general solutions is

$$f(x) = 2 \cdot \frac{3}{4}x^{4/3} - 3x^{1/3} + c$$
.

To get the specific solution we solve using $(1000)^{1/3} = 10$:

$$5 = f(1000) = \frac{3}{2}(1000)^{4/3} - 3(1000)^{1/3} + c$$
$$= \frac{3}{2}10^4 - 30 + c$$

so

$$c = 35 - 15,000 = -14,965$$

and

$$f(x) = \frac{3}{2}x^{4/3} - 3x^{1/3} - 14,965.$$

(11) Find f such that $f''(x) = \sin x + \cos x$, f(0) = 0 and f'(0) = 1.

Solution: Since $(f')'(x) = \sin x + \cos x$, $f'(x) = -\cos x + \sin x + c$. Now f'(0) = -1 + 0 + c = 1so c=2 and $f'(x)=-\cos x+\sin x+2$. From this we get $f(x)=-\sin x-\cos x+2x+d$ for some d. We also need f(0) = -0 - 1 + 0 + d = 0 so d = 1 and

$$f(x) = -\sin x - \cos x + 2x + 1.$$