## Math 100 - WORKSHEET 20 <br> L'HÔPITAL'S RULE

Theorem. Let $f, g$ be diff. near $x=a$. Suppose $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ while $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exists and equals $L$.
This also works if $\lim \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists in the extended sense ( $L=+\infty$ or $L=-\infty$ ), if $\lim _{x \rightarrow a} f(x), \lim _{x \rightarrow a} g(x)$ are both infinite in the extended sense rather than zero, or if we take $\lim _{x \rightarrow \infty}$ (that is " $a=\infty$ ")
(1) Evaluate $\lim _{x \rightarrow 1} \frac{\log x}{x-1}$.
(2) (Final, 2014) Evaluate $\lim _{x \rightarrow 0} \frac{\cos x-e^{x^{2}}}{x^{2}}$.
(3) Do (2) using a 2nd-order Taylor expansion.
(4) (Final, 2015) Evaluate $\lim _{x \rightarrow 0} \frac{\log (1+x)-\sin x}{x^{2}}$.
(5) Given that $f(2)=5, g(2)=3, f^{\prime}(2)=7$ and $g^{\prime}(2)=4$ find $\lim _{x \rightarrow 3} \frac{f(2 x-4)-g(x-1)-2}{g\left(x^{2}-7\right)-3}$.
(6) Evaluate $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}$.
(7) Evaluate $\lim _{x \rightarrow \infty} x^{2} e^{-x}$.
(8) Evaluate $\lim _{x \rightarrow 0^{+}} x \log x$.
(9) Evaluate $\lim _{x \rightarrow 0}(2 x+1)^{1 / \sin x}$.
(10) Evaluate $\lim _{x \rightarrow \infty} x^{n} e^{-x}$.
(11) Suppose $a>0$. Evaluate $\lim _{x \rightarrow \infty} x^{-a} \log x$.

