Math 100 – SOLUTIONS TO WORKSHEET 18 THE MVT AND CURVE SKETCHING

1. The shape of a the graph

- (1) Side exercise: Let f be twice differentiable on [a, b].
 - (a) Suppose first that f(a) = f(b) = 0 and that f is positive somewhere between a, b. Show that there is c between a, b so that f''(c) < 0. Solution: Suppose a < x < b so that f(x) > 0. By the MVT there are $y \in (a, x)$ and $z \in (x, b)$ so that

$$f'(y) = \frac{f(x) - f(a)}{x - a} = \frac{f(x)}{x - a} > 0$$

$$f'(z) = \frac{f(b) - f(x)}{b - x} = -\frac{f(x)}{b - a} < 0.$$

In particular, f'(y) > f'(z) but y < z so f'(z) - f'(y) < 0 but z - y > 0. Applying the MVT to the twice differentiable function f' on the interval [y, z] gives $c \in [y, z] \subset (a, b)$ such that

$$f''(c) = \frac{f'(z) - f'(y)}{z - y} < 0.$$

(b) Now let f(a), f(b) take any values, but suppose f''(x) > 0 on (a, b). Let L : y = mx + n be the line through (a, f(a)), (b, f(b)). Applying part (a) to g(x) = f(x) - (mx + n) show that the graph of f lies below the line L.

Solution: Let g(x) = f(x) - (mx + n). Since the line passes through (a, f(a)) and (b, f(b)) we have g(a) = g(b) = 0. Also, for all a < x < b, g''(x) = f''(x) > 0 since (mx + n)'' = 0. It follows that there is no point such that g(x) > 0, so $g(x) \le 0$ that is $f(x) \le mx + n$.

- (2) For each of the following functions determine its domain, and where it is increasing or decreasing. Except in part (b) also determine where the function is concave up/down.
 - (a) $f(x) = e^x$

Solution: f is defined everywhere. f'(x) = e^x which is everywhere positive, so f is everywhere increasing. Similarly f''(x) = e^x is everywhere positive, so f is concave up on the whole line.
(b) f(x) = x-1/x²⁺¹

Solution: $f'(x) = \frac{(x^2+1)-(x-1)(2x)}{(1+x^2)^2} = \frac{1+2x-x^2}{(1+x^2)^2} = -\frac{(x-1)^2-2}{(1+x^2)^2}$ which is positive when $x > 1+\sqrt{2}$ and $x < 1-\sqrt{2}$ and negative on $(1-\sqrt{2}, 1+\sqrt{2})$, so the function is increasing on $(-\infty, 1-\sqrt{2})$, decreasing on $(1-\sqrt{2}, 1+\sqrt{2})$ and then increasing on $(1+\sqrt{2}, \infty)$.

(c) $f(x) = x \log x - 2x$

Solution: $f'(x) = \log x + 1 - 2 = \log x - 1$, which is positive when x > e and negative when 0 < x < e (the function is undefined if x < 0). Thus the function is increasing on (0, e) and decreasing on (e, ∞) . We have $f''(x) = \frac{1}{x}$ which is positive on the entire domain so the function is concave up everywhere.

- (d) $\frac{x^2-9}{x^2+3}$. You may use that $f'(x) = \frac{24x}{(x^2+3)^2}$ and that $f''(x) = 72\frac{1-x^2}{(x^2+3)^3}$.
- **Solution:** f is defined everywhere. The derivative is positive for x > 0, negative for x < 0. The second derivative is positive for -1 < x < 1 and negative otherwise. The function is therefore decreasing for x < 0 and increasing for x > 0 (minimum at x = 0!), concave down in $(-\infty, -1)$ and $(1, \infty)$ and concave up on (-1, 1) with inflection points at ± 1 .

Date: 16/11/2021, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.