Math 100 - SOLUTIONS TO WORKSHEET 18 THE MVT AND CURVE SKETCHING

1. The shape of a the graph

(1) Side exercise: Let f be twice differentiable on $[a, b]$.
(a) Suppose first that $f(a)=f(b)=0$ and that f is positive somewhere between a, b. Show that there is c between a, b so that $f^{\prime \prime}(c)<0$.
Solution: Suppose $a<x<b$ so that $f(x)>0$. By the MVT there are $y \in(a, x)$ and $z \in(x, b)$ so that

$$
\begin{aligned}
& f^{\prime}(y)=\frac{f(x)-f(a)}{x-a}=\frac{f(x)}{x-a}>0 \\
& f^{\prime}(z)=\frac{f(b)-f(x)}{b-x}=-\frac{f(x)}{b-a}<0
\end{aligned}
$$

In particular, $f^{\prime}(y)>f^{\prime}(z)$ but $y<z$ so $f^{\prime}(z)-f^{\prime}(y)<0$ but $z-y>0$. Applying the MVT to the twice differentiable function f^{\prime} on the interval $[y, z]$ gives $c \in[y, z] \subset(a, b)$ such that

$$
f^{\prime \prime}(c)=\frac{f^{\prime}(z)-f^{\prime}(y)}{z-y}<0
$$

(b) Now let $f(a), f(b)$ take any values, but suppose $f^{\prime \prime}(x)>0$ on (a, b). Let $L: y=m x+n$ be the line through $(a, f(a)),(b, f(b))$. Applying part (a) to $g(x)=f(x)-(m x+n)$ show that the graph of f lies below the line L.
Solution: Let $g(x)=f(x)-(m x+n)$. Since the line passes through $(a, f(a))$ and $(b, f(b))$ we have $g(a)=g(b)=0$. Also, for all $a<x<b, g^{\prime \prime}(x)=f^{\prime \prime}(x)>0$ since $(m x+n)^{\prime \prime}=0$. It follows that there is no point such that $g(x)>0$, so $g(x) \leq 0$ that is $f(x) \leq m x+n$.
(2) For each of the following functions determine its domain, and where it is increasing or decreasing. Except in part (b) also determine where the function is concave up/down.
(a) $f(x)=e^{x}$

Solution: f is defined everywhere. $f^{\prime}(x)=e^{x}$ which is everywhere positive, so f is everywhere increasing. Similarly $f^{\prime \prime}(x)=e^{x}$ is everywhere positive, so f is concave up on the whole line.
(b) $f(x)=\frac{x-1}{x^{2}+1}$

Solution: $\quad f^{\prime}(x)=\frac{\left(x^{2}+1\right)-(x-1)(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{1+2 x-x^{2}}{\left(1+x^{2}\right)^{2}}=-\frac{(x-1)^{2}-2}{\left(1+x^{2}\right)^{2}}$ which is positive when $x>1+\sqrt{2}$ and $x<1-\sqrt{2}$ and negative on $(1-\sqrt{2}, 1+\sqrt{2})$, so the function is increasing on $(-\infty, 1-\sqrt{2})$, decreasing on $(1-\sqrt{2}, 1+\sqrt{2})$ and then increasing on $(1+\sqrt{2}, \infty)$.
(c) $f(x)=x \log x-2 x$

Solution: $\quad f^{\prime}(x)=\log x+1-2=\log x-1$, which is positive when $x>e$ and negative when $0<x<e$ (the function is undefined if $x<0$). Thus the function is increasing on $(0, e)$ and decreasing on (e, ∞). We have $f^{\prime \prime}(x)=\frac{1}{x}$ which is positive on the entire domain so the function is concave up everywhere.
(d) $\frac{x^{2}-9}{x^{2}+3}$. You may use that $f^{\prime}(x)=\frac{24 x}{\left(x^{2}+3\right)^{2}}$ and that $f^{\prime \prime}(x)=72 \frac{1-x^{2}}{\left(x^{2}+3\right)^{3}}$.

Solution: f is defined everywhere. The derivative is positive for $x>0$, negative for $x<0$. The second derivative is positive for $-1<x<1$ and negative otherwise. The function is therefore decreasing for $x<0$ and increasing for $x>0$ (minimum at $x=0!$), concave down in $(-\infty,-1)$ and $(1, \infty)$ and concave up on $(-1,1)$ with inflection points at ± 1.
f

Date: $16 / 11 / 2021$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

