Math 100 - WORKSHEET 17 THE MEAN VALUE THEOREM; LINEAR APPROXIMATION

1. Average slope vs Instantenous slope

(1) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
(2) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$

2. The Mean Value Theorem

Theorem. Let f be defined and differentiable on $[a, b]$. Then there is c between a, b such that $\frac{f(b)-f(a)}{b-a}=$ $f^{\prime}(c)$.
Equivalently, for any x there is c between a, x so that $f(x)=f(a)+f^{\prime}(c)(x-a)$.
(3) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that $f^{\prime}(c)=$?)
(4) (Final, 2015)
(a) Suppose $f, f^{\prime}, f^{\prime \prime}$ are all continuous. Suppose f has at least three zeroes. How many zeroes must $f^{\prime}, f^{\prime \prime}$ have?
(b) [Show that $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions]
(c) Show that the equation has at most two solutions.
(5) (Final, 2012) Suppose $f(1)=3$ and $-3 \leq f^{\prime}(x) \leq 2$ for $x \in[1,4]$. What can you say about $f(4)$?
(6) Show that $|\sin a-\sin b| \leq|a-b|$ for all a, b.
(7) Let $x>0$. Show that $e^{x}>1+x$ and that $\log (1+x)<x$.

3. The Linear Approximation

Fact: For x near a we have $f(x) \approx L(x)$ where $L(x)=f(a)+f^{\prime}(a)(x-a)$
(8) Use a linear approximation to estimate
(a) $\sqrt{1.2}$
(b) (Final, 2015) $\sqrt{8}$
(c) $($ Final 2016$)(26)^{1 / 3}$
(d) $\log 1.07$

