# Math 100 - SOLUTIONS TO WORKSHEET 17 THE MEAN VALUE THEOREM; LINEAR APPROXIMATION 

## 1. Average slope vs Instantenous slope

(1) Let $f(x)=e^{x}$ on the interval [0, 1]. Find all values of $c$ so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.

Solution: $\frac{f(1)-f(0)}{1-0}=\frac{e-1}{1}=e-1$ and $f^{\prime}(x)=e^{x}$ so if $e^{c}=e-1$ we have $c=\log (e-1)$ and indeed $1<e-1<e$ means $0<\log (e-1)<1$.
(2) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of $c$ so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$

Solution: There is no such value: $\frac{f(2)-f(-1)}{2-(-1)}=\frac{2-1}{3}=\frac{1}{3}$ but $f^{\prime}(x)$ only takes the values $\pm 1$.

## 2. The Mean Value Theorem

(3) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let $a, b$ be zeroes of $f$. The MVT will find $c$ such that $f^{\prime}(c)=$ ?)

Solution: We first check there is at least one zero. For this note that $f$ is continuous (it's defined by formula), and that $f(10)=3009+\sin 10 \geq 3008>0$ and $f(-10)=-3021-\sin 10 \leq-3020<0$. By the IVT $f$ has a zero $a$ between $(-10,10)$. Now suppose there were at least two zeros; calling two of them $a, b$ we'd have $f(a)=f(b)=0$. The function $f$ is everywhere differentiable (defined by formula), so by the MVT there is $c$ between $a, b$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$. But $f^{\prime}(x)=9 x^{2}+2+\cos x>0$ for all $x$.
(4) (Final, 2015)
(a) Suppose $f, f^{\prime}, f^{\prime \prime}$ are all continuous. Suppose $f$ has at least three zeroes. How many zeroes must $f^{\prime}, f^{\prime \prime}$ have?
Solution: Suppose $f(a)=f(b)=0$. Since $f$ is everywhere differentiable, by the MVT there is $x$ between $a, b$ such that $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}=0$. Now if $a<b<c$ are zeroes of $f$ we find a zero of $f^{\prime}$ between $(a, b)$ and between $(b, c)$ (so $f^{\prime}$ has at least two zeroes) and then $f^{\prime \prime}$ has a zero between the two zeroes of $f^{\prime}$, so $f^{\prime \prime}$ has at least one zero.
(b) [Show that $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions]

Solution: See IVT worksheet
(c) Show that the equation has at most two solutions.

Solution: Suppose $f(x)=2 x^{2}-3+\sin x+\cos x$ had three zeroes. Then by part (a), $f^{\prime \prime}(x)$ would have a zero. But $f^{\prime \prime}(x)=4-\sin x-\cos x \geq 4-1-1=2>0$ is nowhere vanishing.
(5) (Final, 2012) Suppose $f(1)=3$ and $-3 \leq f^{\prime}(x) \leq 2$ for $x \in[1,4]$. What can you say about $f(4)$ ?

Solution: Since $f$ is everywhere differentiable, by the MVT there is $c \in(1,4)$ such that

$$
\frac{f(4)-f(1)}{4-1}=f^{\prime}(c)
$$

It follows that

$$
-3 \leq \frac{f(4)-f(1)}{3} \leq 2
$$

and hence

$$
-6 \leq f(1)+(-3) \cdot 3 \leq f(4) \leq f(1)+2 \cdot 3=9
$$

(6) Show that $|\sin a-\sin b| \leq|a-b|$ for all $a, b$.

Solution: The claim is automatic if $a=b$ so assume $a \neq b$. Since $f(x)=\sin x$ is everywhere differentiable, for any $a \neq b$ we may apply the MVT to find $c$ between them such that $\frac{\sin a-\sin b}{a-b}=$ $f^{\prime}(c)=\cos c$. It follows that

$$
\frac{|\sin a-\sin b|}{|a-b|}=|\cos c| \leq 1
$$

and the claim follows.
(7) Let $x>0$. Show that $e^{x}>1+x$ and that $\log (1+x)<x$.

Solution: The function $e^{x}$ is everywhere differentiable and its derivative is $e^{x}$. For $x>0$ we therefore have $0<c<x$ such that

$$
\frac{e^{x}-e^{0}}{x-0}=e^{c}>1
$$

(the latter since $c>0$ ). It follows that $e^{x}>x+e^{0}=x+1$.
Similarly, the function $\log (y)$ is differentiable on $[1, \infty)$ with derivative $\frac{1}{y}$. It follows that for $x>0$ we have $d$ in the interval $1<d<1+x$ such that

$$
\frac{\log (1+x)-\log 1}{(1+x)-1}=\frac{1}{d}<1
$$

(the latter since $d>1$ ). Since $\log 1=0$ and $(1+x)-1=x$ it follows that

$$
\log (1+x)<x
$$

## 3. The Linear Approximation

(8) Use a linear approximation to estimate
(a) $\sqrt{1.2}$

Solution: Let $f(x)=\sqrt{x}$ so that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Then $f(1)=1$ and $f^{\prime}(1)=\frac{1}{2}$ so $f(1.2) \approx$ $f(1)+f^{\prime}(1) \cdot 0.2=1+\frac{1}{2} \cdot 0.2=1.1$.
Better: $f(1.21)=1.1$ and $f^{\prime}(1.21)=\frac{1}{2.2}$ so $f(1.2)=f(1.21-0.01) \approx 1.1-0.01 \cdot \frac{1}{2.2} \approx 1.09545$.
(b) (Final, 2015) $\sqrt{8}$

Solution: Using the same $f$ we have $f(9-1) \approx f(9)+f^{\prime}(9) \cdot(-1)=3-\frac{1}{6}=2 \frac{5}{6}$.
(c) (Final, 2016) $(26)^{1 / 3}$

Solution: Let $f(x)=x^{1 / 3}$ so that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Then $f(27)=3$ and $f^{\prime}(27)=\frac{1}{3 \cdot 27^{2 / 3}}=\frac{1}{27}$ so

$$
f(26)=f(27-1) \approx f(27)+(-1) \cdot f^{\prime}(27)=3-\frac{1}{27}=2 \frac{26}{27}
$$

(d) $\log 1.07$

Solution: Let $f(x)=\log x$ so that $f^{\prime}(x)=\frac{1}{x}$. Then $f(1)=0$ and $f^{\prime}(1)=1$ so $f^{\prime}(1.1) \approx 0.07$.

