Math 100 - SOLUTIONS TO WORKSHEET 11 INVERSE TRIG FUNCTIONS; RELATED RATES

1. Inverse trig functions

(1) Evaluation
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right)$; Find $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.

Solution: $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ so $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{6}$. Also $\sin \left(\frac{31 \pi}{11}\right)=\sin \left(\frac{31 \pi}{11}-2 \pi\right)=\sin \left(\frac{9 \pi}{11}\right)=$ $\sin \left(\pi-\frac{9 \pi}{11}\right)=\sin \left(\frac{2 \pi}{11}\right)$ and $\frac{2 \pi}{11} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ so $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)=\frac{2 \pi}{11}$.
(b) (Final 2015) Simplify $\sin (\arctan 4)$

Solution: Consider the right-angled triangle with sides 4,1 and hypotenuse $\sqrt{1+4^{2}}=$ $\sqrt{17}$. Let θ be the angle opposite the side of length 4 . Then $\tan \theta=4$ and $\sin \theta=\frac{4}{\sqrt{17}}$ so $\sin (\arctan 4)=\sin \theta=\frac{4}{\sqrt{17}}$.
(c) Find $\tan (\arccos (0.4))$

Solution: Consider the right-angled triangle with sides $0.4, \sqrt{1-0.4^{2}}$ and hypotenuse 1 . Let θ be the angle between the side of length 0.4 and the hypotenuse. Then $\cos \theta=\frac{0.4}{1}=0.4$ and $\tan \theta=\frac{\sqrt{1-0.4^{2}}}{0.4}=\frac{\sqrt{0.84}}{0.4}=\sqrt{\frac{0.84}{0.16}}=\sqrt{5.25}$.
(2) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}}$, the chain rule gives

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\arcsin (2 x))=\frac{2}{\sqrt{1-4 x^{2}}}
$$

Alternatively, let $\theta=\arcsin 2 x$, so that $\sin \theta=2 x$. Differentiating both sides we get

$$
\cos \theta \cdot \frac{\mathrm{d} \theta}{\mathrm{~d} x}=2
$$

so that

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} x}=\frac{2}{\cos \theta}=\frac{2}{\sqrt{1-\sin ^{2} \theta}}=\frac{2}{\sqrt{1-4 x^{2}}}
$$

(b) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} x} \arctan (x)=\frac{1}{1+x^{2}}$, the chain rule gives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sqrt{1+(\arctan (x))^{2}} & =\frac{1}{2 \sqrt{1+(\arctan (x))^{2}}} \cdot 2 \arctan (x) \cdot \frac{1}{1+x^{2}} \\
& =\frac{\arctan x}{\left(1+x^{2}\right) \sqrt{1+(\arctan (x))^{2}}}
\end{aligned}
$$

Now $\arctan 1=\frac{\pi}{4}$ so the line is

$$
y=\frac{\pi}{8 \sqrt{1+\frac{\pi^{2}}{16}}}(x-1)+\sqrt{1+\frac{\pi^{2}}{16}} .
$$

(c) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

Solution: From the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \arcsin \left(e^{5 x}\right)=\frac{1}{\sqrt{1-e^{10 x}}} 5 e^{5 x}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}}
$$

The function y itself is defined when $-1 \leq e^{5 x} \leq 1$, that is when $5 x \leq 0$, that is when $x \leq 0$. The derivative is defined when $-1<e^{10 x}<1$, that is when $x<0$. The point is that $\operatorname{since} \sin \theta$ has horizontal tangents at $\pm \frac{\pi}{2}, \arcsin x$ has vertical tangents at ± 1.
Solution: We can write the identity as $\sin y=e^{5 x}$ and differentiate both sides to get $y^{\prime} \cos y=$ $5 e^{5 x}$ so that

$$
y^{\prime}=\frac{5 e^{5 x}}{\cos y}=\frac{5 e^{5 x}}{\sqrt{1-\sin ^{2} y}}=\frac{5 e^{5 x}}{\sqrt{1-e^{10 x}}} .
$$

2. Velocity and acceleration

(3) A particle's position is given by $f(t)=t+6 e^{-t / 3}$.
(a) Find the velocity at time t, and specifically at $t=3$.

Solution: The velocity is the derivative of the position, so $v(t)=\frac{\mathrm{d} f}{\mathrm{~d} t}=1-2 e^{-t / 3}$. In particular $v(3)=1-\frac{2}{e}$.
(b) When is the particle moving to the right? to the left?

Solution: The particular is moving to the right when $1-2 e^{-t / 3}>0$ i.e. when $2 e^{-t / 3}<1$ or when $e^{t / 3}>2$ that is when $t>3 \log 2$. It is moving to the left when $t<3 \log 2$.
(c) When is the particle accelerating? decelerating?

Solution: The acceleration is $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{2}{3} e^{-t / 3}$. This is always positive. But "accelerating" means the acceleration is in the same direction as the velocity! So the particle is accelerating when $t>3 \log 2$ and deccelerating before that. Warning: the coincidence of the times in parts (b),(c) is not a general fact!
(4) (Final, 2016) An object is thrown straight up into the air at time $t=0$ seconds. Its height in metres at time t seconds is given by $h(t)=s_{0}+v_{0} t-5 t^{2}$. In the first second the object rises by 5 metres. For how many seconds does the object rise before beginning to fall?

Solution: We are given that $h(1)-h(0)=5$, in other words that $\left(s_{0}+v_{0}-5\right)-s_{0}=5$ so that $v_{0}=10$. Now the velocity of the object is

$$
v(t)=\frac{\mathrm{d} s}{\mathrm{~d} t}=v_{0}-10 t=10-10 t
$$

and this is positive as long as $t \leq 1 \mathrm{~s}$.
(5) A emergency breaking car can decelerate at $9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. How fast can a car drive so that it can come to a stop within 50 m ?

Solution: Suppose the car begins with velocity v_{0}. Its velocity at time t is then $v(t)=v_{0}-g t$ so the stopping time is $t=\frac{v_{0}}{g}$. Reversing time, the distance travelled during the deceleration is the same as the distance travelled while accelerating at acceleration g for time t. The breaking distance L therefore has the form $\frac{1}{2} g t^{2}=\frac{v_{0}^{2}}{2 g}$. The maximum speed is then

$$
v_{0}=\sqrt{2 g L}=\sqrt{2 \cdot 9 \cdot 50}=30 \frac{\mathrm{~m}}{\mathrm{~s}}=180 \mathrm{~km} / \mathrm{h} .
$$

3. Related Rates

(6) A particle is moving along the curve $y^{2}=x^{3}+2 x$. When it passes the point $(1, \sqrt{3})$ we have $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$. Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$.

Solution: We differentiate along the curve with respect to time, finding

$$
2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=3 x^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t}
$$

Plugging in $\frac{\mathrm{d} y}{\mathrm{~d} t}=1, x=1, y=\sqrt{3}$ we find: $2 \sqrt{3}=5 \frac{\mathrm{~d} x}{\mathrm{~d} t}$ so at that time we have

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2 \sqrt{3}}{5}
$$

(7) (Final, 2015, variant) A conical tank of water is 6 m tall and has radius 1 m at the top.
(a) The drain is clogged, and is filling up with rainwater at the rate of $5 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the water rising when its height is 5 m ?
Solution: The water fills a conical volume inside the drain. Suppose that at time t the height of the water is $h(t)$ and the radius at the surface of the water is $r(t)$. Then by similar triangles

$$
\frac{r(t)}{h(t)}=\frac{1}{6} .
$$

We therefore have $r(t)=\frac{h(t)}{6}$. The volume of the water is therefore

$$
V(t)=\frac{1}{3} \pi r^{2} h=\frac{\pi}{108} h^{3}(t)
$$

Differentiating we find

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\pi}{36} h^{2}(t) \frac{\mathrm{d} h}{\mathrm{~d} t}
$$

In particular, if $\frac{\mathrm{d} V}{\mathrm{~d} t}=5 \mathrm{~m}^{3} / \mathrm{min}$ and $h=5 \mathrm{~m}$ then

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{36 \cdot 5}{\pi \cdot 5^{2}}=\frac{36}{5 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}
$$

(b) The drain is unclogged and water begins to drain at the rate of $\left(5+\frac{\pi}{4}\right) \mathrm{m}^{3} / \mathrm{min}$ (but rain is still falling). At what height is the water falling at the rate of $1 \mathrm{~m} / \mathrm{min}$?
Solution: We are now given $\frac{\mathrm{d} V}{\mathrm{~d} t}=-\frac{\pi}{4} \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$ and $\frac{\mathrm{d} h}{\mathrm{~d} t}=-1 \frac{\mathrm{~m}}{\mathrm{~min}}$. Then

$$
h(t)=\sqrt{\frac{36 \frac{\mathrm{~d} V}{\mathrm{~d} t}}{\pi \frac{\mathrm{~d} h}{\mathrm{~d} t}}}=\sqrt{\frac{-36 \pi}{4 \pi(-1)}}=\sqrt{9}=3 \mathrm{~m}
$$

