Math 100 - WORKSHEET 10 LOGARITHMIC AND IMPLICIT DIFFERENTIATION

1. Review of Logarithms

$$\boxed{\log_b(b^x) = b^{\log_b x} = x}$$

$$\boxed{\log_b(xy) = \log_b x + \log_b y} \qquad \boxed{\log_b(x^y) = y \log_b x} \qquad \boxed{\log_b \frac{1}{x} = -\log_b x}$$

$$\gcd(2^{100}) = \qquad (\text{in terms of } \log 2)$$

(1) $\log(e^{10})$

(1) $\log(e^{10}) = \log(2^{100}) =$ (in terms of $\log 2$) (2) A variant on *Moore's Law* states that computing power doubles every 18 months. Suppose computers today can do N_0 operations per second.

(a) Write a formula predicting the future:

• Computers t years from now will be able to do N(t) operations per second where

$$N(t) =$$

- (b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
- (c) At what time will computers be powerful enough to complete the task in 6 months?

2. Differentiation

(1) Differentiate
(a)
$$\frac{d(\log(ax))}{dx} = \frac{\frac{d}{dt}\log(t^2 + 3t)}{\frac{d}{dt}\log(t^2 + 3t)} =$$

(b)
$$\frac{d}{dx}x^2 \log(1+x^2) = \frac{d}{dr} \frac{1}{\log(2+\sin r)} =$$

Date: 14/10/2021, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- (2) (Logarithmic differentiation) Use $\log(fg) = \log f + \log g$ to differentiate $y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$.
- (3) Differentiate using $f' = f \times (\log f)'$ (a) x^x
 - (b) $(\log x)^{\cos x}$
 - (c) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only.

3. Implicit Differentiation

(1) Find the line tangent to the curve $y^2 = 4x^3 + 2x$ at the point (2,6).

- (2) (Final, 2015) Let $xy^2 + x^2y = 2$. Find $\frac{dy}{dx}$ at the point (1, 1).
- (3) (Final 2012) Find the slope of the line tangent to the curve $y + x \cos y = \cos x$ at the point (0, 1).

(4) Find y'' (in terms of x, y) along the curve $x^5 + y^5 = 10$ (ignore points where y = 0).

(5) Find y' if $(x + y)\sin(xy) = x^2$.