Math 100 – SOLUTIONS TO WORKSHEET 10 LOGARITHMIC AND IMPLICIT DIFFERENTIATION

1. Review of Logarithms

(1)
$$\log(e^{10}) = \log(2^{100}) =$$

Solution: $\log e^{10} = 10$ while $\log(2^{100}) = 100 \log 2$.

- (2) A variant on *Moore's Law* states that computing power doubles every 18 months. Suppose computers today can do N_0 operations per second.
 - (a) Write a formula predicting the future:
 - Computers t years from now will be able to do N(t) operations per second where

$$N(t) =$$

Solution: Since there is a doubling every 18 months, there will be t/1.5 doublings in t years and $N(t) = N_0 2^{t/1.5}$.

- (b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
 Solution: There will be two doublings in 3 years, so we will have the answer 3 + ¹⁰/_{2²} = 3 + ¹⁰/₄ = 5.5 years from now.
- (c) At what time will computers be powerful enough to complete the task in 6 months? Solution: The computers of t years from now will be able to complete the task in $10 \cdot 2^{-t/1.5}$ years, so we need to find t such that

$$10 \cdot 2^{-t/1.5} = \frac{1}{2}$$

This is equivalent to $2^{t/1.5} = 20$, and taking logarithms gives

$$\frac{t}{1.5}\log 2 = \log 20$$

and hence

$$t = 1.5 \frac{\log 20}{\log 2} \,.$$

Solution: Can also write $2^{-t/1.5} = \frac{1}{20}$ and take logarithms to get $-\frac{t}{1.5} = \frac{\log \frac{1}{20}}{\log 2}$ so that $t = -1.5 \frac{\log \frac{1}{20}}{\log 2} = 1.5 \frac{\log 20}{\log 2}$ since $\log \frac{1}{20} = -\log 20$.

2. Differentiation

$$\left(\log x\right)' = \frac{1}{x}$$

(1) Differentiate

(a) $\frac{d(\log(ax))}{dx} = \frac{d}{dt}\log(t^2 + 3t) =$ Solution: By the chain rule, the derivatives are: $\frac{1}{ax} \cdot a = \frac{1}{x}$ and $\frac{1}{t^2 + 3t} \cdot (2t + 3) = \frac{2t + t}{t^2 + 3t}$. We can also use the logarithm laws first: $\log(ax) = \log a + \log x$ so $\frac{d}{dx}(\log ax) = \frac{d}{dx}(\log a) + \frac{d}{dx}(\log x) = \frac{1}{x}$ since $\log a$ is constant if a is. Similarly, $\log(t^2 + 3t) = \log t + \log(t + 3)$ so its derivative is $\frac{1}{t} + \frac{1}{t+3}$.

Date: 14/10/2021, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

 $\frac{\mathrm{d}}{\mathrm{d}x}x^2\log(1+x^2) = \frac{\mathrm{d}}{\mathrm{d}r}\frac{1}{\log(2+\sin r)} =$ Solution: Applying the product rule and then the chain rule we get: $\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2\log(1+x^2)\right) =$ (b) $\frac{\mathrm{d}}{\mathrm{d}x}x^2\log(1+x^2) =$ $2x\log(1+x^2) + x^2\frac{1}{1+x^2} \cdot 2x = 2x\log(1+x^2) + \frac{2x^3}{1+x^2}$. Using the quotient rule and the chain rule we get $\frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2+\sin r)} = -\frac{1}{\log^2(2+\sin r)} \cdot \frac{1}{2+\sin r} \cdot \cos r = -\frac{\cos r}{(2+\sin r)\log^2(2+\sin r)} \,.$

(2) (Logarithmic differentiation) differentiate $y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$. Solution: We have

$$\log y = \log (x^2 + 1) + \log(\sin x) + \log \left(\frac{1}{\sqrt{x^2 + 3}}\right) + \log (e^{\cos x})$$
$$= \log (x^2 + 1) + \log (\sin x) - \frac{1}{2} \log (x^2 + 3) + \cos x.$$

Differentiating with respect to x gives:

$$\frac{y'}{y} = \frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{1}{2}\frac{2x}{x^2 + 3} - \sin x$$

and solving for y' finally gives

$$y' = \left(\frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{x}{x^2 + 3} - \sin x\right) \cdot (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$$

(3) Differentiate using $|f' = f \times (\log f)^{\cdot}|$

(a) x^x

If $y = x^x$ then $\log y = x \log x$. Differentiating with respect to x gives $\frac{1}{y}y' = \frac{1}{y}y'$ Solution:

 $\log x + x \cdot \frac{1}{x} = \log x + 1 \text{ so } y' = y (\log x + 1) = x^x (\log x + 1).$ Solution: By the rule, $\frac{d}{dx} (x^x) = x^x \frac{d}{dx} (\log(x^x)) = x^x (\log x + 1).$ Solution: We have $x^x = (e^{\log x})^x = e^{x \log x}$. Applying the chain rule we now get $(x^x)' = e^{x \log x}$. $e^{x \log x} (\log x + 1) = x^x (\log x + 1).$

(b) $(\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\log x\right)^{\cos x} = \left(\log x\right)^{\cos x} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left(\cos x \log(\log x)\right)$$
$$= -\sin x \log\log x \left(\log x\right)^{\cos x} + \left(\log x\right)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x}$$
$$= -\sin x \log\log x \left(\log x\right)^{\cos x} + \cos x \left(\log x\right)^{\cos x - 1} \frac{1}{x}.$$

(c) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{dy}{dx}$ in terms of x only. Solution: By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y \frac{\mathrm{d}\log y}{\mathrm{d}x} = x^{\log x} \frac{\mathrm{d}}{\mathrm{d}x} \left(\log x \cdot \log x\right)$$
$$= x^x \left(2\log x \cdot \frac{1}{x}\right) = 2\log x \cdot x^{x-1}.$$

3. Implicit Differentiation

(1) Find the line tangent to the curve $y^2 = 4x^3 + 2x$ at the point (2,6).

Solution: Differentiating with respect to x we find $2y \frac{dy}{dx} = 12x^2 + 2$, so that $\frac{dy}{dx} = \frac{6x^2+1}{y}$. In particular at the point (2,6) the slope is $\frac{25}{6}$ and the line is

$$y = \frac{25}{6}(x-2) + 6.$$

- (2) (Final, 2015) Let $xy^2 + x^2y = 2$. Find $\frac{dy}{dx}$ at the point (1,1).
 - **Solution:** Differentiating with respect to x we find $y^2 + 2xy\frac{dy}{dx} + 2xy + x^2\frac{dy}{dx} = 0$ along the curve. Setting x = y = 1 we find that, at the indicated point,

 $3 + 3 \frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(1,1)} = 0$

 \mathbf{SO}

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(1,1)} = -1$$

- (3) (Final 2012) Find the slope of the line tangent to the curve $y + x \cos y = \cos x$ at the point (0, 1). **Solution:** Differentiating with respect to x we find $y' + \cos y - x \sin y \cdot y' = -\sin x$, so that $y' = -\frac{\sin x + \cos y}{1 - x \sin y} = \frac{\sin x + \cos y}{x \sin y - 1}$. Setting x = 0, y = 1 we get that at that point $y' = \frac{\cos 1}{-1} = -\cos 1$. (4) Find y'' (in terms of x, y) along the curve $x^5 + y^5 = 10$ (ignore points where y = 0).
- **Solution:** Differentiating with respect to x we find $5x^4 + 5y^4y' = 0$, so that $y' = -\frac{x^4}{y^4}$. Differentiating again we find

$$y'' = -\frac{4x^3}{y^4} + \frac{4x^4y'}{y^5} = -\frac{4x^3}{y^4} - \frac{4x^8}{y^9} \,.$$

(5) Find y' if $(x + y) \sin(xy) = x^2$.

Solution: Differentiating with respect to x we find $(1 + y')\sin(xy) + (x+y)\cos(xy)(y+xy') = 2x$, so that

$$y' [\sin(xy) + x(x+y)\cos(xy)] = 2x - [\sin(xy) + y(x+y)\cos(xy)]$$

so that

$$y' = \frac{2x - \sin(xy) - y(x+y)\cos(xy)}{\sin(xy) + x(x+y)\cos(xy)} \,.$$