Math 100 – WORKSHEET 9 THE CHAIN RULE; INVERSE FUNCTIONS

1. The chain rule

Fact. $(f(g(x)))' = f'(g(x))g'(x) \text{ or } \frac{\mathrm{d}}{\mathrm{d}x}(f(g(x))) = \frac{\mathrm{d}f}{\mathrm{d}g} \cdot \frac{\mathrm{d}g}{\mathrm{d}x}.$

(1) Write the function as a composition and then differentiate. (a) e^{3x}

(b) $\sqrt{2x+1}$

(c) (Final, 2015) $\sin(x^2)$

(d) $(7x + \cos x)^n$.

- (2) (Final, 2012) Let $f(x) = g(2\sin x)$ where $g'(\sqrt{2}) = \sqrt{2}$. Find $f'(\frac{\pi}{4})$.
- (3) Differentiate (a) $7x + \cos(x^n)$

(b) $e^{\sqrt{\cos x}}$

(c) (Final 2012) $e^{(\sin x)^2}$

Date: 12/10/2021, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(4) Suppose f, g are differentiable functions with $f(g(x)) = x^3$. Suppose that f'(g(4)) = 5. Find g'(4).

2. Inverse functions

To find the inverse for y = f(x): (1) "solve for x", get x = g(y) (2) "exchange x, y" to get g(x).

- (5) Find the function inverse to $y = x^7 + 3$.
- (6) Does $y = x^2$ have an inverse?
- (7) Consider the function y = √x 1 on x ≥ 1.
 (a) Find the inverse function, in the form x = g(y).

(b) Find $\frac{dy}{dx}$, $\frac{dx}{dy}$ and calculate their product.

To find the derivative of f^{-1} : (1) Convert $y = f^{-1}(x)$ to the form x = f(y) (2) compute $\frac{dx}{dy}$ (3) In $\frac{dy}{dx}$ plug in $y = f^{-1}(x)$ to get expression in terms of x.

(9) Let $f(x) = x^3 + 5x$. Find $f^{-1}(6)$ and $(f^{-1})'(6)$.

⁽⁸⁾ Let $f(x) = \log x$. Apply the chain rule to the formula $f(e^y) = y$ to get a formula for $f'(e^y)$, and use that to determine the derivative of the logarithm.