Math 100 - WORKSHEET 9 THE CHAIN RULE; INVERSE FUNCTIONS

1. The chain Rule

Fact. $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$ or $\frac{\mathrm{d}}{\mathrm{d} x}(f(g(x)))=\frac{d f}{d g} \cdot \frac{d g}{d x}$.
(1) Write the function as a composition and then differentiate.
(a) $e^{3 x}$
(b) $\sqrt{2 x+1}$
(c) (Final, 2015) $\sin \left(x^{2}\right)$
(d) $(7 x+\cos x)^{n}$.
(2) (Final, 2012) Let $f(x)=g(2 \sin x)$ where $g^{\prime}(\sqrt{2})=\sqrt{2}$. Find $f^{\prime}\left(\frac{\pi}{4}\right)$.
(3) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$
(b) $e^{\sqrt{\cos x}}$
(c) (Final 2012) $e^{(\sin x)^{2}}$
(4) Suppose f, g are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.

2. InVERSE FUNCTIONS

To find the inverse for $y=f(x)$: (1) "solve for x ", get $x=g(y)(2)$ "exchange x, y " to get $g(x)$.
(5) Find the function inverse to $y=x^{7}+3$.
(6) Does $y=x^{2}$ have an inverse?
(7) Consider the function $y=\sqrt{x-1}$ on $x \geq 1$.
(a) Find the inverse function, in the form $x=g(y)$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and calculate their product.

To find the derivative of f^{-1} : (1) Convert $y=f^{-1}(x)$ to the form $x=f(y)(2)$ compute $\frac{d x}{d y}$ (3) In $\frac{d y}{d x}$ plug in $y=f^{-1}(x)$ to get expression in terms of x.
(8) Let $f(x)=\log x$. Apply the chain rule to the formula $f\left(e^{y}\right)=y$ to get a formula for $f^{\prime}\left(e^{y}\right)$, and use that to determine the derivative of the logarithm.
(9) Let $f(x)=x^{3}+5 x$. Find $f^{-1}(6)$ and $\left(f^{-1}\right)^{\prime}(6)$.

