Math 100 - SOLUTIONS TO WORKSHEET 9 THE CHAIN RULE; INVERSE FUNCTIONS

1. The chain rule

(1) Write the function as a composition and then differentiate.
(a) $e^{3 x}$

Solution: This is $f(g(x))$ where $g(x)=3 x$ and $f(y)=e^{x}$. The derivative is thus

$$
e^{3 x} \cdot \frac{\mathrm{~d}(3 x)}{\mathrm{d} x}=3 e^{3 x}
$$

(b) $\sqrt{2 x+1}$

Solution: This is $f(g(x))$ where $g(x)=2 x+1$ and $f(y)=\sqrt{y}$. Thus

$$
\frac{\mathrm{d} f(g(x))}{\mathrm{d} x}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{2 \sqrt{g}} \cdot 2=\frac{1}{\sqrt{2 x+1}} .
$$

(c) (Final, 2015) $\sin \left(x^{2}\right)$

Solution: This is $f(g(x))$ where $g(x)=x^{2}$ and $f(y)=y^{2}$. The derivative is then

$$
\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right)
$$

(d) $(7 x+\cos x)^{n}$.

Solution: This is $f(g(x))$ where $g(x)=7 x+\cos x$ and $f(y)=y^{n}$. The derivative is thus

$$
n(7 x+\cos x)^{n-1} \cdot(7-\sin x)
$$

(2) (Final, 2012) Let $f(x)=g(2 \sin x)$ where $g^{\prime}(\sqrt{2})=\sqrt{2}$. Find $f^{\prime}\left(\frac{\pi}{4}\right)$.

Solution: By the chain rule, $f^{\prime}(x)=g^{\prime}(2 \sin x) \cdot \frac{\mathrm{d}}{\mathrm{d} x}(2 \sin x)=2 g^{\prime}(2 \sin x) \cos x$. In particular,

$$
\begin{aligned}
f^{\prime}\left(\frac{\pi}{4}\right) & =2 g^{\prime}\left(2 \sin \frac{\pi}{4}\right) \cos \frac{\pi}{4}=2 g^{\prime}\left(2 \frac{\sqrt{2}}{2}\right) \cdot \frac{\sqrt{2}}{2} \\
& =2 \sqrt{2} \cdot \frac{\sqrt{2}}{2}=2
\end{aligned}
$$

(3) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$

Solution: We apply linearity and then the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(7 x+\cos \left(x^{n}\right)\right) & =\frac{\mathrm{d}(7 x)}{\mathrm{d} x}+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d} x} \\
& =7+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d}\left(x^{n}\right)} \cdot \frac{\mathrm{d}\left(x^{n}\right)}{\mathrm{d} x} \\
& =7-\sin \left(x^{n}\right) \cdot n x^{n-1}
\end{aligned}
$$

(b) $e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\sqrt{\cos x}} & =e^{\sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \sqrt{\cos x} \\
& =e^{\sqrt{\cos x}} \frac{1}{2 \sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x \\
& =-e^{\sqrt{\cos x}} \frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

(c) (Final 2012) $e^{(\sin x)^{2}}$

Solution: By the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{(\sin x)^{2}}\right) & =e^{(\sin x)^{2}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left((\sin x)^{2}\right) \\
& =e^{(\sin x)^{2}} 2 \sin x \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x \\
& =e^{(\sin x)^{2}} 2 \sin x \cos x \\
& =e^{(\sin x)^{2}} \sin (2 x)
\end{aligned}
$$

(4) Suppose f, g are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.

Solution: Applying the chain rule we have $f^{\prime}(g(x)) \cdot g^{\prime}(x)=3 x^{2}$. Plugging in $x=4$ we get $5 g^{\prime}(4)=3 \cdot 4^{2}$ and hence $g^{\prime}(4)=\frac{48}{5}$.

2. Inverse functions

(5) Find the function inverse to $y=x^{7}+3$.

Solution: If $y=x^{7}+3$ then $x^{7}=y-3$ so $x=(y-3)^{1 / 7}$, and the inverse function is $y=(x-3)^{1 / 7}$.
(6) Does $y=x^{2}$ have an inverse?

Solution: Not on its full domain (not single-valued), yes on $[0, \infty)$.
(7) Consider the function $y=\sqrt{x-1}$ on $x \geq 1$.
(a) Find the inverse function, in the form $x=g(y)$.

Solution: If $y=\sqrt{x-1}$ then $y^{2}=x-1$ so $x=y^{2}+1$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and calculate their product.

Solution: We have $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x-1}}$ and $\frac{\mathrm{d} x}{\mathrm{~d} y}=2 y$. Their product is $\frac{2 y}{2 \sqrt{x-1}}=\frac{y}{\sqrt{x-1}}=1$ since $y=\sqrt{x-1}$ along the curves.
(8) Let $f(x)=\log x$. Apply the chain rule to the formula $f\left(e^{y}\right)=y$ to get a formula for $f^{\prime}\left(e^{y}\right)$, and use that to determine the derivative of the logarithm.

Solution: We differentiate $f\left(e^{y}\right)=y$ with respect to y to get $f^{\prime}\left(e^{y}\right) \cdot e^{y}=1$ so $f^{\prime}\left(e^{y}\right)=\frac{1}{e^{y}}$. Now let $e^{y}=x$ to get

$$
(\log x)^{\prime}=\frac{1}{x}
$$

(9) Let $f(x)=x^{3}+5 x$. Find $f^{-1}(6)$ and $\left(f^{-1}\right)^{\prime}(6)$.

Solution: We note that $f(1)=6$ so $f^{-1}(6)=1$. Also $\left(f^{-1}\right)^{\prime}(6)=\frac{1}{f^{\prime}(1)}$. Now $f^{\prime}(x)=3 x^{2}+5$ so

$$
\left(f^{-1}\right)^{\prime}(6)=\frac{1}{8} \text {. }
$$

