Math 100 - SOLUTIONS TO WORKSHEET 8 EXPONENTIAL AND TRIG FUNCTIONS

1. Exponentials

(1) Simplify
(a) $\left(e^{5}\right)^{3},\left(2^{1 / 3}\right)^{12}, 7^{3-5}$.

Solution: $\left(e^{5}\right)^{3}=e^{5 \cdot 3}=e^{15},\left(2^{1 / 3}\right)^{12}=2^{\frac{1}{3} \cdot 12}=2^{4}=16,7^{3-5}=7^{-2}=\frac{1}{49}$.
(b) $\log \left(10 e^{5}\right), \log \left(3^{7}\right)$.

Solution: $\quad \log \left(10 e^{5}\right)=\log (10)+5 \log (e)=\log (10)+5, \log \left(3^{7}\right)=7 \log 3$.
(2) Differentiate:
(a) 10^{x}

Solution: This is $(\log 10) \cdot 10^{x}$.
(b) $\frac{5 \cdot 10^{x}+x^{2}}{3^{x}+1}$

Solution: By the quotient rule this is

$$
\frac{\left(5 \log 10 \cdot 10^{x}+2 x\right)\left(3^{x}+1\right)-\left(5 \cdot 10^{x}+x^{2}\right) \log 3 \cdot 3^{x}}{\left(3^{x}+1\right)^{2}}
$$

2. Trigonometric functions

(3) (Special values) What is $\sin \frac{\pi}{3}$? What is $\cos \frac{5 \pi}{2}$?

Solution: $\sin \frac{\pi}{3}=\frac{1}{2}, \cos \left(\frac{5 \pi}{2}\right)=\cos \left(\frac{\pi}{2}+2 \pi\right)=\cos \left(\frac{\pi}{2}\right)=0$.
(4) Derivatives of trig functions
(a) Interpret $\lim _{h \rightarrow 0} \frac{\sin h}{h}$ as a derivative and find its value.

Solution: This is $\lim _{h \rightarrow 0} \frac{\sin (0+h)-\sin 0}{h}=\left.\frac{d \sin x}{d x}\right|_{x=0}=\cos 0=1$.
(b) Differentiate $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

Solution: Applying the quotient rule we get

$$
\begin{aligned}
\frac{\mathrm{d} \tan \theta}{\mathrm{~d} \theta} & =\frac{\cos \theta \cdot \cos \theta-\sin \theta \cdot(-\cos \theta)}{\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
\end{aligned}
$$

We also have

$$
\frac{\mathrm{d} \tan \theta}{\mathrm{~d} \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=1+\tan ^{2} \theta
$$

which is sometimes useful.
(5) What is the equation of the line tangent the graph $y=T \sin x+\cos x$ at the point where $x=\frac{\pi}{4}$?

Solution: We have $y\left(\frac{\pi}{4}\right)=\frac{T}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{T+1}{\sqrt{2}}$. Also, $\frac{\mathrm{d} y}{\mathrm{~d} x}=T \cos x-\sin x$ so $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=\frac{\pi}{4}}=\frac{T}{\sqrt{2}}-\frac{1}{\sqrt{2}}=$ $\frac{T-1}{\sqrt{2}}$. So the line is

$$
y=\frac{T-1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)+\frac{T+1}{\sqrt{2}} .
$$

3. Functions in Chains
(6) Write each function as a composition
(a) $e^{3 x}$

Solution: This is $f(g(x))$ where $g(x)=3 x$ and $f(y)=e^{x}$.
(b) $\sqrt{2 x+1}$

Solution: This is $f(g(x))$ where $g(x)=2 x+1$ and $f(y)=\sqrt{y}$.
(c) (Final, 2015) $\sin \left(x^{2}\right)$

Solution: This is $f(g(x))$ where $g(x)=x^{2}$ and $f(y)=\sin y$.
(d) $(7 x+\cos x)^{n}$.

Solution: This is $f(g(x))$ where $g(x)=7 x+\cos x$ and $f(y)=y^{n}$.

