# Math 100 - WORKSHEET 7 <br> DIFFERENTIATION RULES 

1. The product and quotient rules

Fact. $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}, \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}, \quad\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
(1) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$
(b) (Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $x^{a} e^{x}$ )
(c) (Final, 2016) $h(x)=\frac{x^{2}+3}{2 x-1}$
(d) $\frac{x^{2}+A}{\sqrt{x}}$
(2) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for $A$.
(3) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$. Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

## 2. The tangent line

Definition. The line tangent to the graph $y=f(x)$ at $x=a$ is the line $y=f^{\prime}(a)(x-a)+f(a)$
(1) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.
(2) Let $f(x)=\frac{g(x)}{x}$, where $g(x)$ is differentiable at $x=1$. The line $y=2 x-1$ is tangent to the graph $y=f(x)$ at $x=1$. Find $g(1)$ and $g^{\prime}(1)$.
(3) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?
(4) Find the lines of slope 3 tangent the curve $y=x^{3}+4 x^{2}-8 x+3$.
(5) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is $B$ ?

