Math 100 - SOLUTIONS TO WORKSHEET 7 DIFFERENTIATION RULES

1. The product and quotient rules

(1) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$

Solution: This is a linear combination of power laws so $f^{\prime}(x)=6 \pi x^{\pi-1}+2 e x^{e-1}-\frac{7}{2} x^{5 / 2}$.
(b) (Final, 2016) $g(x)=x^{2} e^{x}$ (and then also $x^{a} e^{x}$)

Solution: Applying the product rule we get $\frac{d g}{d x}=\frac{d\left(x^{2}\right)}{d x} \cdot e^{x}+x^{2} \cdot \frac{d\left(e^{x}\right)}{d x}=\left(2 x+x^{2}\right) e^{x}=$ $x(x+2) e^{x}$, and in general

$$
\frac{d}{d x}\left(x^{a} e^{x}\right)=a x^{a-1} e^{x}+x^{a} e^{x}=x^{a-1}(x+a) e^{x}
$$

(c) (Final, 2016) $h(x)=\frac{x^{2}+3}{2 x-1}$

Solution: Applying the quotient rule the derivative is $\frac{2 x \cdot(2 x-1)-\left(x^{2}+3\right) \cdot 2}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}-6}{(2 x-1)^{2}}=$ $2 \frac{x^{2}-x-3}{(2 x-1)^{2}}$.
(d) $\frac{x^{2}+A}{\sqrt{x}}$

Solution: We write the function as $x^{3 / 2}+A x^{-1 / 2}$ so its derivative is $\frac{3}{2} x^{1 / 2}-\frac{A}{2} x^{-3 / 2}$.
(2) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

Solution: $\quad f^{\prime}(x)=\frac{1 \cdot(\sqrt{x}+A)-x\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x}+A)^{2}}=\frac{\sqrt{x}+A-\frac{1}{2} \sqrt{x}}{(\sqrt{x}+A)^{2}}=\frac{\frac{1}{2} \sqrt{x}+A}{(\sqrt{x}+A)^{2}}$. Plugging in $x=4$ we have

$$
\frac{3}{16}=f^{\prime}(4)=\frac{1+A}{(2+A)^{2}}
$$

so we have

$$
3(2+A)^{2}=16(1+A)
$$

that is

$$
3 A^{2}+12 A+12=16+16 A
$$

that is

$$
3 A^{2}-4 A-4=0
$$

In fact this gives $A=-\frac{2}{3}, 2$.
(3) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$. Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

Solution: $\quad(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1 \cdot 4=10$.

$$
\left(\frac{f}{g}\right)^{\prime}(1)=\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2}
$$

2. The tangent line

(1) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so the slope of the line is $f^{\prime}(4)=\frac{1}{4}$, and the equation for the line line itself is $y-2=\frac{1}{4}(x-4)$ or $y=\frac{1}{4}(x-4)+2$ or $y=\frac{1}{4} x+1$.
(2) Let $f(x)=\frac{g(x)}{x}$, where $g(x)$ is differentiable at $x=1$. The line $y=2 x-1$ is tangent to the graph $y=f(x)$ at $x=1$. Find $g(1)$ and $g^{\prime}(1)$.

Solution: At $x=1$ the line meets the graph of $y=f(x)$ so $2 \cdot 1-1=1=f(1)=\frac{g(1)}{1}$ and we concldue that $g(1)=1$. The slope of the line there is 2 , so $f^{\prime}(1)=2$. Since we have

$$
f^{\prime}(x)=\frac{x g^{\prime}(x)-g(x) x}{x^{2}}
$$

we have $2=f^{\prime}(1)=g^{\prime}(1)-g(1)$ so $g^{\prime}(1)=2+g(1)=3$.
(3) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?

Solution: The line has slope 4 and meets the curve at $(1,6)$. The last two functions don't evaluate to 6 at 1.We differentiate the first three.

$$
\begin{aligned}
\left.\frac{d}{d x}\right|_{x=1}\left(x^{3}+2 x^{2}+3 x\right) & =\left.\left(3 x^{2}+4 x+3\right)\right|_{x=1}=10 \\
\left.\frac{d}{d x}\right|_{x=1}\left(x^{2}+3 x+2\right) & =\left.(2 x+3)\right|_{x=1}=5 \\
\left.\frac{d}{d x}\right|_{x=1}(2 \sqrt{x+3}+2) & =\left.\left(\frac{2}{2 \sqrt{x+3}}\right)\right|_{x=1}=\frac{1}{2}
\end{aligned}
$$

The answer is "none of the above".
(4) Find the lines of slope 3 tangent the curve $y=x^{3}+4 x^{2}-8 x+3$.

Solution: $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+8 x-8$, so the line tangent at (x, y) has slope 3 iff $3 x^{2}+8 x-8=3$, that is iff $3\left(x^{2}-1\right)+8(x-1)=0$. We can factor this as $(x-1)(3 x+11)=0$ so the x-coordinates of the points of tangency are $1,-\frac{11}{3}$ and the lines are:

$$
\begin{aligned}
& y=3(x-1) \\
& y=3\left(x+\frac{11}{3}\right)+\left(\left(\frac{11}{3}\right)^{3}+4\left(\frac{11}{3}\right)^{2}-8\left(\frac{11}{3}\right)+3\right)
\end{aligned}
$$

(5) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is B ?

Solution: At the point (x, y) the curve has slope $\frac{d y}{d x}=3 x^{2}+2$, so the curve has slope 5 at the points where $x= \pm 1$, that is the points $(-1,-3)$ and $(1,3)$. The line needs to meet the curve at the point, so there are two solutions:

$$
\begin{array}{ll}
y=5 x+2 & (\text { tangent at }(-1,-3)) \\
y=5 x-2 & (\text { tangent at }(1,3))
\end{array}
$$

