Math 100 - WORKSHEET 6 THE DERIVATIVE

1. Definition of the derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.
(b) $f(x)=\frac{1}{x}$, any a.
(c) $f(x)=x^{3}-2 x$, any a (you may use $(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}$).
(2) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}, \lim _{h \rightarrow 0} \frac{\sin x}{x}$
(3) (Final, 2015) Is the function

$$
f(x)= \begin{cases}\sqrt{1+x^{2}}-1 & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

differentiable at $x=0$?
2. Linear combinations; power Laws
(1) If f, g are functions and a, b are numbers then $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$
(2) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{r}\right)=r x^{r-1}$
(4) Let $g(y)=A y^{5 / 2}+y^{2}$. Suppose that $g^{\prime}(4)=0$. What is A ?
(5) Find the second derivative of $5 t+3 \sqrt{t}$
(6) Differentiate $f(x)=\frac{5 x^{3}-2 x+1}{\sqrt{x}}$.
(7) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

