Math 100 - SOLUTIONS TO WORKSHEET 6 THE DERIVATIVE

1. Definition of the Derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(1) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.

Solution: $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0}(6+h)=6$.
(b) $f(x)=\frac{1}{x}$, any a.

Solution: $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{a-(a+h)}{a(a+h)}\right)=\lim _{h \rightarrow 0} \frac{-h}{h \cdot a(a+h)}=-\lim _{h \rightarrow 0} \frac{1}{a(a+h)}=$ $-\frac{1}{a^{2}}$.
(c) $f(x)=x^{3}-2 x$, any a (you may use $(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}$).

Solution: We have

$$
\begin{aligned}
\frac{(a+h)^{3}-2(a+h)-a^{3}+2 a}{h} & =\frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h-a^{3}+2 a}{h} \\
& =\frac{3 a^{2} h+3 a h^{2}+h^{3}-2 h}{h} \\
& =3 a^{2}-2+3 a h+h^{2} \xrightarrow[h \rightarrow 0]{ } 3 a^{2}-2 .
\end{aligned}
$$

(2) Express the limits as derivatives: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}, \lim _{h \rightarrow 0} \frac{\sin x}{x}$

Solution: These are the derivative of $f(x)=\cos x$ at the point $a=5$ and of $g(x)=\sin x$ at the point $a=0$.
(3) (Final, 2015) Is the function

$$
f(x)= \begin{cases}\sqrt{1+x^{2}}-1 & x \leq 0 \\ x^{2} \cos \frac{1}{x} & x>0\end{cases}
$$

differentiable at $x=0$?
Solution: We have $f(0)=\sqrt{1+0}-1=0$, so we'd have $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ provided the limit exists, and since we have different expresions for $f(x)$ on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x} & =\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+x^{2}}-1}{x}=\lim _{x \rightarrow 0^{-}} \frac{\left(1+x^{2}\right)-1}{x\left(\sqrt{1+x^{2}}+1\right)} \\
& =\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x\left(\sqrt{1+x^{2}}+1\right)}=\lim _{x \rightarrow 0^{-}} \frac{x}{\sqrt{1+x^{2}}+1}=0
\end{aligned}
$$

Alternatively, we could recognize the limit

$$
\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1+x^{2}}-\sqrt{1-0^{2}}}{x}
$$

as giving the derivative of $f(x)=\sqrt{1+x^{2}}$ at $x=0$. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{d x} \sqrt{1+x^{2}}\right]_{x=0}=\left[\frac{2 x}{2 \sqrt{1+x^{2}}}\right]_{x=0}=0$ and it would again follow that
$\lim _{x \rightarrow 0^{-}} \frac{f(x)}{x}=0$.
On the right we have

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \cos \frac{1}{x}}{x}=\lim _{x \rightarrow 0^{+}} x \cos \left(\frac{1}{x}\right)=0
$$

by the squeeze theorem (we have $-x \leq x \cos \frac{1}{x} \leq x$ for all $x>0$ and $\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0}(-x)=0$). Since both limits are 0 the function f is differentiable at $x=0$ and $f^{\prime}(0)=0$.

2. Linear combinations; power laws

(4) Let $g(y)=A y^{5 / 2}+y^{2}$. Suppose that $g^{\prime}(4)=0$. What is A ?

Solution: Differentiating we find $g^{\prime}(y)=\frac{5}{2} A y^{3 / 2}+2 y$, so $0=g^{\prime}(4)=\frac{5}{2} A \cdot 4^{3 / 2}+2 \cdot 4=$ $\frac{5}{2} \cdot A \cdot 8+8$. This means: $20 A+8=0$ so $A=-\frac{2}{5}$.
(5) Find the second derivative of $5 t+3 \sqrt{t}$

Solution: $\quad t^{\prime \prime}=0$ and $(\sqrt{t})^{\prime \prime}=\left(\frac{1}{2} t^{-1 / 2}\right)^{\prime}=-\frac{1}{4} t^{-3 / 2}$ so by linearity the second derivative is $-\frac{3}{4} t^{-3 / 2}$.
(6) Differentiate $f(x)=\frac{5 x^{3}-2 x+1}{\sqrt{x}}$.

Solution: Write $f(x)=5 x^{5 / 2}-2 x^{1 / 2}+x^{-1 / 2}$ and then $f^{\prime}(x)=\frac{25}{2} x^{3 / 2}-x^{-1 / 2}-\frac{1}{2} x^{-3 / 2}$.
(7) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so the slope of the line is $f^{\prime}(4)=\frac{1}{4}$, and the equation for the line itself is $y-2=\frac{1}{4}(x-4)$ or $y=\frac{1}{4}(x-4)+2$ or $y=\frac{1}{4} x+1$.

