Math 100 - WORKSHEET 5 THE IVT

1. The Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.
Checklist:
(1) Construct function (if needed)
(2) Check continuity
(3) Find points of positivity \& negativity
(4) Invoke IVT
(1) Show that $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.
(2) (Final 2011) Let $y=f(x)$ be continuous with domain $[0,1]$ and range in $[3,5]$. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.
(3) $\sin x=x+1$ has a solution.
(4) (Final 2015) Show that the equation $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions.
(5) (Final 2018) Let g be a continuous function such that

$$
\frac{x}{2} \leq g(x) \leq \frac{x}{2}+1
$$

for each positive real number x. Let $f(x)=g(x)+\sin x$. Show that there are infinitely many real numbers c such that $f(c)=\frac{c+1}{2}$.
2. Definition of the Derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(6) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.
(b) $f(x)=\frac{1}{x}$, any a.
(c) $f(x)=x^{3}-2 x$, any a. (you may use $\left.(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)$.
(7) Express the limit as a derivative: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}$.

