Math 100 - SOLUTIONS TO WORKSHEET 5
 THE IVT

1. The Intermediate Value Theorem

(1) Show that $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.

Solution: f is continuous on $[0,1]$ (given by formula there). We have $f(0)=1, f(1)=-2$. By the intermediate value theorem there is $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=0 \in(-2,1)$.
(2) (Final 2011) Let $y=f(x)$ be continuous with domain $[0,1]$ and range in $[3,5]$. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.

Solution: Consider the diffference $g(x)=f(x)-(2 x+3)$. By arithmetic of limits this is a continuous function. We have $g(0)=f(0)-3 \geq 3-3=0$ (since $f(0) \geq 3$). We have $g(1)=$ $f(1)-5 \leq 5-5=0$. By the IVT $g(x)$ takes every value between $g(0)$ and $g(1)$, so there is x_{0} such that $g\left(x_{0}\right)=0$ and then $f\left(x_{0}\right)-\left(2 x_{0}+3\right)=0$ so $f\left(x_{0}\right)=2 x_{0}+3$ so the graphs intersect at the point $\left(x_{0}, 2 x_{0}+3\right)$.
(3) $\sin x=x+1$ has a solution.

Solution: Let $f(x)=x+1-\sin x$, so we want x such that $f(x)=0$. The function f is continuous. Note that $f(100)=101-\sin 100 \geq 100$ while $f(-100)=-100+1-\sin 100 \leq-98$. By the IVT there is $x_{0} \in(-100,100)$ where $f\left(x_{0}\right)=0$, that is $x_{0}+1-\sin x_{0}=0$ so $x_{0}+1=\sin x_{0}$.
(4) (Final 2015) Show that the equation $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions.

Solution: We have $f(0)=0-3+0+1=-2$. On the other hand if x has large magnitude then $f(x)$ is positive:

$$
\begin{aligned}
f(10) & =200-3+\sin 10+\cos 10 \geq 200-5=195 . \\
f(-10) & =200-3-\sin 10+\cos 10 \geq 200-5=195 .
\end{aligned}
$$

Thus $f(-10), f(10)$ are positive, $f(0)$ is negative. Since f is continuous everywhere (given by formula), the IVT shows that its graph crosses the x axis once in $(-10,0)$ and once in $(0,10)$.
(5) (Final 2018) Let g be a continuous function such that

$$
\frac{x}{2} \leq g(x) \leq \frac{x}{2}+1
$$

for each positive real number x. Let $f(x)=g(x)+\sin x$. Show that there are infinitely many real numbers c such that $f(c)=\frac{c+1}{2}$.

Solution: Let $h(x)=f(x)-\frac{x+1}{2}$, in terms of which we are looking for points c such that $h(c)=0$. Then

$$
h(x)=(g(x)+\sin x)-\frac{x+1}{2}=\left(g(x)-\frac{x+1}{2}\right)+\sin x .
$$

We now note that for all x we have

$$
\frac{x}{2} \leq g(x) \leq \frac{x}{2}+1
$$

and therefore

$$
-\frac{1}{2} \leq g(x)-\frac{x}{2}-\frac{1}{2} \leq \frac{1}{2} .
$$

It follows that whenever $\sin x=1$ we have

$$
h(x)=\left(g(x)-\frac{x+1}{2}\right)+1 \geq-\frac{1}{2}+1 \geq \frac{1}{2}>0
$$

and whenver $\sin x=-1$ we have

$$
h(x)=\left(g(x)-\frac{x+1}{2}\right)-1 \leq \frac{1}{2}-1 \leq-\frac{1}{2}<0 .
$$

Accordingly for $k \in \mathbb{Z}$ let $a_{k}=2 \pi k+\frac{\pi}{2}$ and let $b_{k}=2 \pi k+\frac{3 \pi}{2}$. Then $\sin a_{k}=1, \sin b_{k}=-1$ and therefore

$$
h\left(a_{k}\right)>0, \quad h\left(b_{k}\right)<0 .
$$

Now h is a continuous function $(g(x)$ is assumed continuous and h is the sum of g and a function defined by formula and continuous everywhere). It then follows from the IVT that for each k there is $c_{k} \in\left(a_{k}, b_{k}\right)$ such that $h\left(c_{k}\right)=0$ or equivalently $f\left(c_{k}\right)=\frac{c_{k}+1}{2}$. Finally the values c_{k} are all different (they each belong to a different cycle of the sine function) so there are indeed infinitely many of them.

2. Definition of the Derivative

Definition. $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(6) Find $f^{\prime}(a)$ if
(a) $f(x)=x^{2}, a=3$.

Solution: $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-(3)^{2}}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h}=\lim _{h \rightarrow 0}(6+h)=6$.
(b) $f(x)=\frac{1}{x}$, any a.

Solution: $\quad \lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{a-(a+h)}{a(a+h)}\right)=\lim _{h \rightarrow 0} \frac{-h}{h \cdot a(a+h)}=-\lim _{h \rightarrow 0} \frac{1}{a(a+h)}=$ $-\frac{1}{a^{2}}$.
(c) $f(x)=x^{3}-2 x$, any a. (you may use $\left.(a+h)^{3}=a^{3}+3 a^{2} h+3 a h^{2}+h^{3}\right)$.

Solution: We have

$$
\begin{aligned}
\frac{(a+h)^{3}-2(a+h)-a^{3}+2 a}{h} & =\frac{a^{3}+3 a^{2} h+3 a h^{2}+h^{3}-2 a-2 h-a^{3}+2 a}{h} \\
& =\frac{3 a^{2} h+3 a h^{2}+h^{3}-2 h}{h} \\
& =3 a^{2}-2+3 a h+h^{2} \xrightarrow[h \rightarrow 0]{ } 3 a^{2}-2 .
\end{aligned}
$$

(7) Express the limit as a derivative: $\lim _{h \rightarrow 0} \frac{\cos (5+h)-\cos 5}{h}$.

Solution: This is the derivative of $f(x)=\cos x$ at the point $a=5$.

