Math 100 - WORKSHEET 4 CONTINUITY; THE IVT

1. Continuity

(1) Which of these functions are continuous everywhere? Why?
(a) $f(x)= \begin{cases}x & x<0 \\ \cos x & x \geq 0\end{cases}$
(b) $f(x)= \begin{cases}x & x<0 \\ \sin x & x \geq 0\end{cases}$
(2) Let $f(x)=\frac{x^{3}-x^{2}}{x-1}$.
(a) Why is $f(x)$ discontinuous at $x=1$?
(b) Find b such that $g(x)=\left\{\begin{array}{ll}f(x) & x \neq 1 \\ b & x=1\end{array}\right.$ is continouous everywhere.
(c) Find c, d such that $h(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ c & x=1 \\ d-x^{2} & x>1\end{array}\right.$ is continuous.
(d) (Final 2013) For which value of the constant c is $f(x)=\left\{\begin{array}{ll}c x^{2}+3 & x \geq 1 \\ 2 x^{3}-c & x<1\end{array}\right.$ continuous on $(-\infty, \infty) ?$
(3) Where are the following functions continuous?

$$
f(x)=\frac{1}{\sqrt{7-x^{2}}} ; \quad g(x)=\frac{x^{2}+2 x+1}{2+\cos x} ; \quad h(x)=\frac{2+\cos x}{x^{2}+2 x+1} ; \quad k(x)=\log (\sin x)
$$

(4) (Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

2. The Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.
(5) Show that $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.
(6) (Final 2011) Let $y=f(x)$ be continuous with domain $[0,1]$ and range in $[3,5]$. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.
(7) (Final 2010) Two points on Earth are called antipodal if they are exactly opposite to each other. Show that, at any given moment, there are two antipodal points on the equator with exactly the same temperature.

