Math 100 - SOLUTIONS TO WORKSHEET 4 CONTINUITY; THE IVT

1. Continuity

(1) Which of these functions are continuous everywhere? Why?
(a) $f(x)= \begin{cases}x & x<0 \\ \cos x & x \geq 0\end{cases}$

Solution: This is clearly continuous on $(-\infty, 0)$ and $(0, \infty)$ but $\lim _{x \rightarrow 0^{-}} f(x)=0$ while $\lim _{x \rightarrow 0^{+}} f(x)=1$.
(b) $g(x)= \begin{cases}x & x<0 \\ \sin x & x \geq 0\end{cases}$

Solution: This is clearly continuous on $(-\infty, 0)$ and $(0, \infty)$. Also, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=$ $0=f(0)$ so the function is continuous everywhere.
(2) Let $f(x)=\frac{x^{3}-x^{2}}{x-1}$.
(a) Why is $f(x)$ discontinuous at $x=1$?

Solution: The formula is undefined there.
(b) Find b such that $g(x)=\left\{\begin{array}{ll}f(x) & x \neq 1 \\ b & x=1\end{array}\right.$ is continouous everywhere.

Solution: $\quad \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x^{2}(x-1)}{x-1}=\lim _{x \rightarrow 1} x^{2}=1$ so setting $b=1$ gives the desired function.
(c) Find c, d such that $h(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ c & x=1 \\ d-x^{2} & x>1\end{array}\right.$ is continuous.

Solution: The function is already continuous on $[0,1)$ and $(1, \infty)$. We have $\lim _{x \rightarrow 1^{-}} h(x)=$ $\lim _{x \rightarrow 1} \sqrt{x}=1$ so we must have $c=1$. We also need $1=\lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}}\left(d-x^{2}\right)=$ $d-1$ so we need $d=2$.
(d) (Final 2013) For which value of the constant c is $f(x)=\left\{\begin{array}{ll}c x^{2}+3 & x \geq 1 \\ 2 x^{3}-c & x<1\end{array}\right.$ continuous on $(-\infty, \infty) ?$
Solution: The function is already continuous on $(-\infty, 1)$ and $(1, \infty)$. We have $\lim _{x \rightarrow 1^{-}} f(x)=$ $2 \cdot 1^{3}-c=2-c$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} c \cdot 1^{2}+3=3+c=f(1)$ so the function will be continuous at $x=1$ iff $2-c=3+c$ that is if $c=-\frac{1}{2}$.
(3) Where are the following functions continuous?

Solution: $\quad(-\sqrt{7}, \sqrt{7}),(-\infty,+\infty),(-\infty,-1) \cup(-1, \infty)$ respectively. In the last case, the denominator vanishes at $x=1$ and the function actually blows up there $(2+\cos 1 \neq 0)$. The logarithm is defined only for positive arguments, so the domain is $\{x \mid \sin x>0\}=\bigcup_{k \in \mathbb{Z}}\left(2 \pi k-\frac{\pi}{2}, 2 \pi k+\frac{\pi}{2}\right)$
(4) (Final 2011) Suppose f, g are continuous such that $g(3)=2$ and $\lim _{x \rightarrow 3}(x f(x)+g(x))=1$. Find $f(3)$.

Solution: Since f, g are continuous and applying the limit laws we have

$$
\begin{aligned}
1=\lim _{x \rightarrow 3}(x f(x)+g(x)) & =\left(\lim _{x \rightarrow 3} x\right)\left(\lim _{x \rightarrow 3} f(x)\right)+\left(\lim _{x \rightarrow 3} g(x)\right) \\
& =3 f(3)+g(3)=3 f(3)+2
\end{aligned}
$$

Solving for $f(3)$ we get

$$
f(3)=-\frac{1}{3}
$$

2. The Intermediate Value Theorem

Theorem. Let $f(x)$ be continuous for $a \leq x \leq b$. Then $f(x)$ takes every value between $f(a), f(b)$.
(5) Show that $f(x)=2 x^{3}-5 x+1$ has a zero in $0 \leq x \leq 1$.

Solution: f is continuous on $[0,1]$ (given by formula there). We have $f(0)=1, f(1)=-2$. By the intermediate value theorem there is $x_{0} \in(0,1)$ such that $f\left(x_{0}\right)=0 \in(-2,1)$.
(6) (Final 2011) Let $y=f(x)$ be continuous with domain [0,1] and range in [3,5]. Show the line $y=2 x+3$ intersects the graph of $y=f(x)$ at least once.

Solution: Consider the diffference $g(x)=f(x)-(2 x+3)$. By arithmetic of limits this is a continuous function. We have $g(0)=f(0)-3 \geq 3-3=0$ (since $f(0) \geq 3$). We have $g(1)=$ $f(1)-5 \leq 5-5=0$. By the IVT $g(x)$ takes every value between $g(0)$ and $g(1)$, so there is x_{0} such that $g\left(x_{0}\right)=0$ and then $f\left(x_{0}\right)-\left(2 x_{0}+3\right)=0$ so $f\left(x_{0}\right)=2 x_{0}+3$ so the graphs intersect at the point $\left(x_{0}, 2 x_{0}+3\right)$.
(7) (Final 2010) Two points on Earth are called antipodal if they are exactly opposite to each other. Show that, at any given moment, there are two antipodal points on the equator with exactly the same temperature.

Solution: Let $T(\theta)$ be the temperature at the point on the equator with longitude θ (say measured in radians), which we suppose continuous. Let $f(\theta)=T(\theta)-T(\theta+\pi)$ be the difference between the temperatures at a point on the equator and its antipode. Then f is continuous as well since it is the difference of continuous functions, and in terms of f we are looking for longitudes θ such that $f(\theta)=0$. Now choose any point θ_{0}. If $f\left(\theta_{0}\right)=0$ we are done. Otherwise $f\left(\theta_{0}\right)$ is either positive or negative, and we observe that $f\left(\theta_{0}+\pi\right)=T\left(\theta_{0}+\pi\right)-T\left(\theta_{0}+2 \pi\right)=T\left(\theta_{0}+\pi\right)-T\left(\theta_{0}\right)=-f\left(\theta_{0}\right)$ has the opposite sign (the middle equality holds since rotating by 2π means going all the way around the Earth). By the IVT there is then a point between θ_{0} and its antipode where f vanishes.

