Math 100 - SOLUTIONS TO WORKSHEET 3 INFINITE LIMITS AND LIMITS AT INFINITY

1. Infinite Limits

(1)
(a) (Final, 2014) Evaluate $\lim _{x \rightarrow-3+} \frac{x+2}{x+3}$.

Solution: The denominator vanishes at -3 while the numerator does not, so the function blows up there. When $x>-3$, we have $x+3>0$. Also, when x is close to $-3, x+2$ is close to -1 . We conclude that $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x+3}=-\infty$.
(b) Let $f(x)=\frac{x-3}{x^{2}+x-12}$. What is $\lim _{x \rightarrow 4} f(x)$? What about $\lim _{x \rightarrow-4^{+}} f(x), \lim _{x \rightarrow-4^{-}} f(x)$?

Solution: The limits do not exist: if x is very close to -4 then $x+4$ is very small and $\frac{x-3}{x^{2}+x-12}=\frac{x-3}{(x-3)(x+4)}=\frac{1}{x+4}$ is very large. That said, when $x>-4$ we have $\frac{1}{x+4}>0$ and when $x<-4$ we have $\frac{1}{x+4}<0$ so (in the extended sense)

$$
\begin{aligned}
& \lim _{x \rightarrow-4^{+}} \frac{x-3}{x^{2}+x-12}=+\infty \\
& \lim _{x \rightarrow-4^{-}} \frac{x-3}{x^{2}+x-12}=-\infty
\end{aligned}
$$

(2) Evaluate
(a) $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}$

Solution: The function blows up at both sides, and remains positive on both sides. Therefore

$$
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty
$$

(b) $\lim _{x \rightarrow 4} \frac{\sin x}{|x-4|}$

Solution: $|x-4| \rightarrow 0$ as $x \rightarrow 4$ while $\sin x \underset{x \rightarrow 4}{\longrightarrow} \sin 4 \neq 0$, so the function blows up there. Since $|x-2|$ is positive and $\sin 4$ is negative $(\pi<4<2 \pi)$ we have

$$
\lim _{x \rightarrow 4} \frac{\sin x}{|x-4|}=-\infty
$$

(c) $\lim _{x \rightarrow \frac{\pi}{2}+} \tan x, \lim _{x \rightarrow \frac{\pi}{2}-} \tan x$.

Solution: We have $\tan x=\frac{\sin x}{\cos x}$. Now for x close to $\frac{\pi}{2}, \sin x$ is close to $\sin \frac{\pi}{2}=1$, so $\sin x$ is positive. On the other hand $\lim _{x \rightarrow \frac{\pi}{2}} \cos x=\cos \frac{\pi}{2}=0$ so $\tan x$ blows up there. Since $\cos x$ is decreasing on $[0, \pi]$ it is positive if $x<\frac{\pi}{2}$ and negative if $x>\frac{\pi}{2}$, so:

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}+} \tan x=-\infty \\
& \lim _{x \rightarrow \frac{\pi}{2}-} \tan x=+\infty
\end{aligned}
$$

2. Limits at infinity

(1) Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=$

Solution: $\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x-3}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x} \cdot \frac{1+\frac{1}{x^{2}}}{1-\frac{3}{x}}=\lim _{x \rightarrow \infty} x \cdot \frac{1+\frac{1}{x^{2}}}{1-\frac{3}{x}}=\infty$.
(b) (Final, 2015) $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+2 x-8}=$

Solution: $\lim _{x \rightarrow \infty} \frac{x+1}{x^{2}+2 x-8}=\lim _{x \rightarrow \infty} \frac{x}{x^{2}} \cdot \frac{1+\frac{1}{x}}{1+\frac{2}{x}-\frac{8}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \frac{1+\frac{1}{x}}{1+\frac{2}{x}-\frac{8}{x^{2}}}=0$.
(c) (Quiz, 2015) $\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+x}-2 x}=$

Solution: We have

$$
\begin{aligned}
\frac{3 x}{\sqrt{4 x^{2}+x}-2 x} & =\frac{3 x}{\sqrt{x^{2}\left(4+\frac{x}{x^{2}}\right)}-2 x}=\frac{3 x}{\sqrt{x^{2}} \sqrt{4+\frac{1}{x}}-2 x} \\
& =\frac{3 x}{|x| \sqrt{4+\frac{1}{x}}-2 x}=\frac{3 x}{(-x) \sqrt{4+\frac{1}{x}}-2 x} \\
& =\frac{3}{-\sqrt{4+\frac{1}{x}}-2} \xrightarrow[x \rightarrow-\infty]{\longrightarrow \sqrt{4+0}-2}=\frac{3}{-\frac{3}{4}}
\end{aligned}
$$

(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=$

Solution: $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=\lim _{x \rightarrow \infty} \frac{x^{2} \sqrt{1+\frac{\sin x}{x^{4}}}}{x^{2}\left(1-\frac{\cos x}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{\sqrt{1+\frac{\sin x}{x^{4}}}}{1-\frac{\cos x}{x^{2}}}$. Now for all x we have $-\frac{1}{x^{4}} \leq \frac{\sin x}{x^{4}} \leq \frac{1}{x^{4}}$ and $-\frac{1}{x^{2}} \leq \frac{\cos x}{x^{2}} \leq \frac{1}{x^{2}}$. Since $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{4}}=0$ by the squeeze theorem we have $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{4}}=\lim _{x \rightarrow \infty} \frac{\cos x}{x^{2}}=0$. Thus

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+\sin x}}{x^{2}-\cos x}=\frac{\sqrt{1+0}}{1-0}=1 .
$$

(e) $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1}\right)=$

Solution: We have

$$
\begin{aligned}
\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1} & =\sqrt{x^{2}+2 x}-\sqrt{x^{2}-1} \cdot \frac{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}}=\frac{\left(x^{2}+2 x\right)-\left(x^{2}-1\right)}{\sqrt{x^{2}+2 x}+\sqrt{x^{2}-1}} \\
& =\frac{2 x+1}{|x| \sqrt{1+\frac{2}{x}}+|x| \sqrt{1-\frac{1}{x^{2}}}}=\frac{x\left(2+\frac{1}{x}\right)}{-x \sqrt{1+\frac{2}{x}}+(-x) \sqrt{1-\frac{1}{x^{2}}}} \\
& =-\frac{2+\frac{1}{x}}{\sqrt{1+\frac{2}{x}}+\sqrt{1-\frac{1}{x^{2}}}} \frac{2}{x \rightarrow-\infty}-\frac{2}{1+1}=-1 .
\end{aligned}
$$

