Math 100 - WORKSHEET 2 LIMIT LAWS

1. Existence of limits and blowup
(1) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 3 & x=1 \\ 2-x^{2} & x>1\end{array}\right.$.
(b) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 4-x^{2} & x>1\end{array}\right.$.
(2) Let $f(x)=\frac{x-3}{x^{2}+x-12}$.
(a) (Final 2014) What is $\lim _{x \rightarrow 3} f(x)$?
(b) What about $\lim _{x \rightarrow 2} f(x)$?

2. Limit Laws

Fact. Limits respect arithmetic operations and standard functions (e^{x}, sin, cos, log, ...) as long as everything is well-defined.
(beware especially of division by zero)
(3) Evaluate using the limit laws:
(a) $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}=$
(b) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=$
(4) Evaluate using the identity $\sqrt{a}-\sqrt{b}=(\sqrt{a}-\sqrt{b}) \cdot \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{a-b}{\sqrt{a}+\sqrt{b}}$:
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$.
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1+x^{2}}}{x}$.
(5) Evaluate using the Sandwich/Squeeze Theorem
(a) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)$.
(b) (Final, 2014) Suppose that $8 x \leq f(x) \leq x^{2}+16$ for all $x \geq 0$. Find $\lim _{x \rightarrow 4} f(x)$.

