Math 100 – WORKSHEET 2 LIMIT LAWS

1. EXISTENCE OF LIMITS AND BLOWUP

(1) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.

(a)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 3 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$.

(b)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$.

(2) Let
$$f(x) = \frac{x-3}{x^2+x-12}$$
.
(a) (Final 2014) What is $\lim_{x\to 3} f(x)$?

(b) What about $\lim_{x\to 2} f(x)$?

Date: 14/9/2021, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

2. Limit Laws

Fact. Limits respect arithmetic operations and standard functions $(e^x, \sin, \cos, \log, ...)$ as long as everything is well-defined.

(beware especially of division by zero)

- (3) Evaluate using the limit laws: (a) $\lim_{x\to 2} \frac{x+1}{4x^2-1} =$
 - (b) $\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2} =$

(4) Evaluate using the identity $\sqrt{a} - \sqrt{b} = \left(\sqrt{a} - \sqrt{b}\right) \cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$: (a) $\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x}$.

(b)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1+x^2}}{x}$$

(5) Evaluate using the Sandwich/Squeeze Theorem (a) $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$.

(b) (Final, 2014) Suppose that $8x \le f(x) \le x^2 + 16$ for all $x \ge 0$. Find $\lim_{x \to 4} f(x)$.