Math 100 - SOLUTIONS TO WORKSHEET 2
 LIMIT LAWS

1. Existence of limits and blowup

(1) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
(a) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 3 & x=1 \\ 2-x^{2} & x>1\end{array}\right.$.

Solution: $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(2-x^{2}\right)=2-1^{2}=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=$ $\sqrt{1}=1$ so

$$
\lim _{x \rightarrow 1} f(x)=1
$$

(b) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{ll}\sqrt{x} & 0 \leq x<1 \\ 1 & x=1 \\ 4-x^{2} & x>1\end{array}\right.$.

Solution: $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(4-x^{2}\right)=4-1^{2}=3$ and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=$ $\sqrt{1}=1$ so the limit does not exist (but the one-sided limits do).
(2) Let $f(x)=\frac{x-3}{x^{2}+x-12}$.
(a) (Final 2014) What is $\lim _{x \rightarrow 3} f(x)$?

Solution: $\quad f(x)=\frac{x-3}{(x-3)(x+4)}=\frac{1}{x+4}$ so $\lim _{x \rightarrow 3} f(x)=\frac{1}{3+4}=\frac{1}{7}$.
(b) What about $\lim _{x \rightarrow 2} f(x)$?

Solution: The limit does not exist: if x is very close to 2 then $x-2$ is very small and $\frac{1}{x-2}$ is very large. That said, when $x>2$ we have $\frac{1}{x-2}>0$ and when $x<2$ we have $\frac{1}{x-2}<0$ so (in the extended sense)

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} \frac{1}{x-2}=+\infty \\
& \lim _{x \rightarrow 2^{-}} \frac{1}{x-2}=-\infty
\end{aligned}
$$

More on this in the next lecture.

2. Limit Laws

Fact. Limits respect arithmetic operations and standard functions (e^{x}, sin, cos, log, ...) as long as everything is well-defined.
(beware especially of division by zero)
(3) Evaluate using the limit laws:
(a) $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}=$

Solution: The expression is well-behaved at $x=2$ so $\lim _{x \rightarrow 2} \frac{x+1}{4 x^{2}-1}=\frac{2+1}{4 \cdot 2^{2}-1}=\frac{3}{15}=\frac{1}{5}$.
(b) $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=$

Solution: $\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{x^{2}+x-2}=\lim _{x \rightarrow 1} \frac{e^{x}(x-1)}{(x-1)(x+2)}=\lim _{x \rightarrow 1} \frac{e^{x}}{x+2}=\frac{e^{1}}{1+2}=\frac{e}{3}$.
(4) Evaluate using the identity $\sqrt{a}-\sqrt{b}=(\sqrt{a}-\sqrt{b}) \cdot \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{a-b}{\sqrt{a}+\sqrt{b}}$:
(a) $\lim _{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$.

Solution: Both numerator and denominator vanish at $x=0$ so we need to deal with the cancellation. Multiplying and dividing by $\sqrt{4+x}+2$ we have

$$
\begin{aligned}
\frac{\sqrt{4+x}-2}{x} & =\frac{\sqrt{4+x}-2}{x} \cdot \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2} \\
& =\frac{(4+x)-4}{x(\sqrt{4+x}+2)}=\frac{x}{x(\sqrt{4+x}+2)} \\
& \frac{1}{\sqrt{4+x}+2} \xrightarrow[x \rightarrow 0]{\longrightarrow} \frac{1}{\sqrt{4}+2}=\frac{1}{4} .
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1+x^{2}}}{x}$.

Solution: We have

$$
\begin{aligned}
\frac{\sqrt{1+x}-\sqrt{1+x^{2}}}{x^{2}} & =\frac{\sqrt{1+x}-\sqrt{1+x^{2}}}{x^{2}} \cdot \frac{\sqrt{1+x}+\sqrt{1+x^{2}}}{\sqrt{1+x}+\sqrt{1+x^{2}}} \\
& =\frac{(1+x)-\left(1+x^{2}\right)}{x^{2}\left(\sqrt{1+x}+\sqrt{1+x^{2}}\right)} \\
& =\frac{x-x^{2}}{x^{2}\left(\sqrt{1+x}+\sqrt{1+x^{2}}\right)} \\
& =\frac{1-x}{\sqrt{1+x}+\sqrt{1+x^{2}}} \cdot \frac{1}{x}
\end{aligned}
$$

Now as $x \rightarrow 0$ we have $\frac{1-x}{\sqrt{1+x}+\sqrt{1+x^{2}}} \rightarrow \frac{1}{2}$ while $\frac{1}{x}$ blows up so the whole expression blows up and the limit does not exist.
(5) Evaluate using the Sandwich/Squeeze Theorem
(a) $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)$.

Solution: \quad Since $-1 \leq \sin \theta \leq 1$ for all θ while $x^{2} \geq 0$ we have for all x that

$$
-x^{2} \leq x^{2} \sin \left(\frac{\pi}{x}\right) \leq x^{2}
$$

Now $\lim _{x \rightarrow 0} x^{2}=0$ and $\lim _{x \rightarrow 0}\left(-x^{2}\right)=0$, so by the sandwich theorem $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{x}\right)=0$ too.
(b) (Final, 2014) Suppose that $8 x \leq f(x) \leq x^{2}+16$ for all $x \geq 0$. Find $\lim _{x \rightarrow 4} f(x)$.

Solution: We have $\lim _{x \rightarrow 4} 8 x=32$ and $\lim _{x \rightarrow 4} x^{2}+16=32$ so by the sandwich theorem $\lim _{x \rightarrow 4} f(x)$ exists and equals 32 .

