Math 100 - SOLUTIONS TO WORKSHEET 2 LIMIT LAWS

1. Existence of limits and blowup

- (1) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful.
 - (a) $\lim_{x \to 1} f(x)$ where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1 \\ 3 & x = 1 \\ 2 x^2 & x > 1 \end{cases}$

Solution: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (2-x^2) = 2-1^2 = 1$ and $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = 1$ $\sqrt{1} = 1$ so

$$\lim_{x \to 1} f(x) = 1$$

 $\lim_{x \to 1} f(x) = 1.$ (b) $\lim_{x \to 1} f(x)$ where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1 \\ 1 & x = 1 \\ 4 - x^2 & x > 1 \end{cases}$

Solution: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (4-x^2) = 4-1^2 = 3$ and $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = 1$ $\sqrt{1} = 1$ so the limit does not exist (but the one-sided limits do).

- (2) Let $f(x) = \frac{x-3}{x^2+x-12}$.
 - (a) (Final 2014) What is $\lim_{x\to 3} f(x)$?

Solution: $f(x) = \frac{x-3}{(x-3)(x+4)} = \frac{1}{x+4}$ so $\lim_{x\to 3} f(x) = \frac{1}{3+4} = \boxed{\frac{1}{7}}$.

Solution: The limit does not exist: if x is very close to 2 then x-2 is very small and $\frac{1}{x-2}$ is very large. That said, when x > 2 we have $\frac{1}{x-2} > 0$ and when x < 2 we have $\frac{1}{x-2} < 0$ so (in the extended sense)

$$\lim_{x \to 2^+} \frac{1}{x-2} = +\infty$$

$$\lim_{x \to 2^-} \frac{1}{x-2} = -\infty.$$

More on this in the next lecture.

2. Limit Laws

Fact. Limits respect arithmetic operations and standard functions $(e^x, \sin, \cos, \log, ...)$ as long as everything is well-defined.

(beware especially of division by zero)

- (3) Evaluate using the limit laws:
 - (a) $\lim_{x\to 2} \frac{x+1}{4x^2-1} =$

Solution: The expression is well-behaved at x=2 so $\lim_{x\to 2} \frac{x+1}{4x^2-1} = \frac{2+1}{4\cdot 2^2-1} = \frac{3}{15} = \frac{1}{5}$.

(b) $\lim_{x\to 1} \frac{e^x(x-1)}{x^2+x-2} =$ Solution: $\lim_{x\to 1} \frac{e^x(x-1)}{x^2+x-2} = \lim_{x\to 1} \frac{e^x(x-1)}{(x-1)(x+2)} = \lim_{x\to 1} \frac{e^x}{x+2} = \frac{e^1}{1+2} = \frac{e}{3}$.

(4) Evaluate using the identity $\sqrt{a} - \sqrt{b} = \left(\sqrt{a} - \sqrt{b}\right) \cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{a-b}{\sqrt{a} + \sqrt{b}}$:

(a) $\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$. Solution: Both numerator and denominator vanish at x=0 so we need to deal with the cancellation. Multiplying and dividing by $\sqrt{4+x}+2$ we have

Intiplying and dividing by
$$\sqrt{4+x+2}$$
 we have
$$\frac{\sqrt{4+x}-2}{x} = \frac{\sqrt{4+x}-2}{x} \cdot \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2}$$

$$= \frac{(4+x)-4}{x(\sqrt{4+x}+2)} = \frac{x}{x(\sqrt{4+x}+2)}$$

$$\frac{1}{\sqrt{4+x}+2} \xrightarrow[x \to 0]{} \frac{1}{\sqrt{4}+2} = \frac{1}{4}.$$

(b) $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1+x^2}}{x}$. Solution: We have

$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x^2} = \frac{\sqrt{1+x} - \sqrt{1+x^2}}{x^2} \cdot \frac{\sqrt{1+x} + \sqrt{1+x^2}}{\sqrt{1+x} + \sqrt{1+x^2}}$$
$$= \frac{(1+x) - (1+x^2)}{x^2 \left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$
$$= \frac{x - x^2}{x^2 \left(\sqrt{1+x} + \sqrt{1+x^2}\right)}$$
$$= \frac{1-x}{\sqrt{1+x} + \sqrt{1+x^2}} \cdot \frac{1}{x}.$$

Now as $x \to 0$ we have $\frac{1-x}{\sqrt{1+x}+\sqrt{1+x^2}} \to \frac{1}{2}$ while $\frac{1}{x}$ blows up so the whole expression blows up and the limit does not exist.

(5) Evaluate using the Sandwich/Squeeze Theorem

(a) $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right)$.

Solution: Since $-1 \le \sin \theta \le 1$ for all θ while $x^2 \ge 0$ we have for all x that

$$-x^2 \le x^2 \sin\left(\frac{\pi}{x}\right) \le x^2.$$

Now $\lim_{x\to 0} x^2 = 0$ and $\lim_{x\to 0} (-x^2) = 0$, so by the sandwich theorem $\lim_{x\to 0} x^2 \sin\left(\frac{\pi}{x}\right) = 0$

(b) (Final, 2014) Suppose that $8x \le f(x) \le x^2 + 16$ for all $x \ge 0$. Find $\lim_{x \to 4} f(x)$.

Solution: We have $\lim_{x\to 4} 8x = 32$ and $\lim_{x\to 4} x^2 + 16 = 32$ so by the sandwich theorem $\lim_{x\to 4} f(x)$ exists and equals 32.