

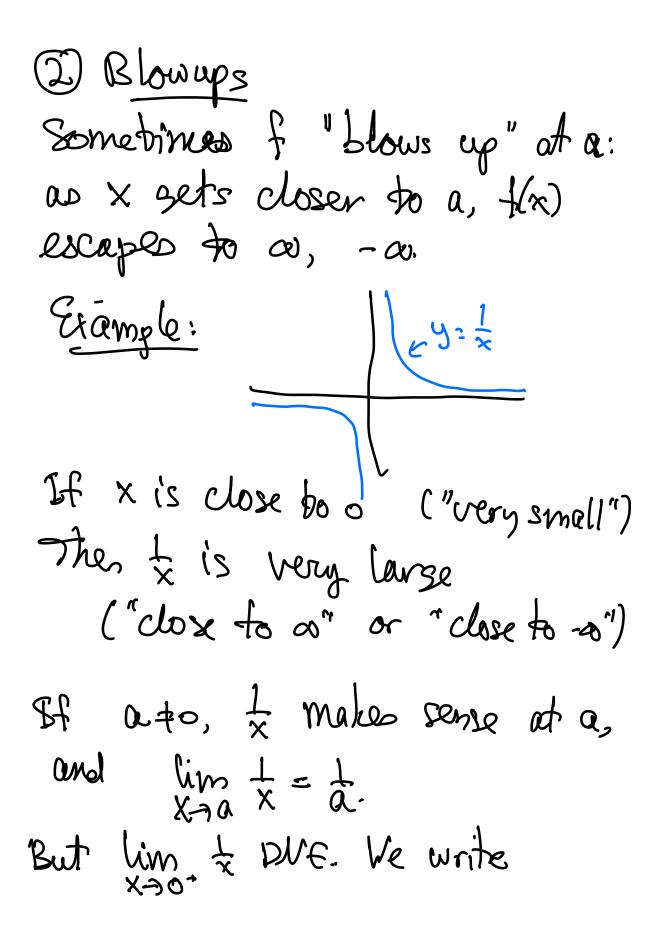
@Calculating limits using "limit laws" = "arithmetric of limits". algebraic trick: Va-VE= Q-6 1) The squeeze thm. Warning: difficulty of discomfort with inequalities Idea: sametimes hard to control f directly. But & stays between ~ y=x Suidelines = cy = f(x) Y=-x

Examples: (1) Find
$$\lim_{x \to 0} x^{3} \sin(\frac{\pi}{x})$$

(2) (Frinal, 2014): Suppose
 $8 x = f(x) \le x^{2} + 16$ for all $x \ge 0$.
Find $\lim_{x \to 9} f(x)$.
Solutions:
(1) ($8 \sin(\frac{\pi}{x})$) does not make sense
if $x \ge 0$; hiphly $\operatorname{OSC}(11 \operatorname{atory} \operatorname{paear} 0)$.
 $[\operatorname{Can't} \operatorname{Say:}_{x \ge 0} \lim_{x \ge 0} x^{2} \sin(\frac{\pi}{x}) =$
($\lim_{x \ge 0} x^{2}$) ($\lim_{x \ge 0} x(\frac{\pi}{x}) = 0$. ()=0
this $\liminf_{x \ge 0} DV \in$
[But $\lim_{x \ge 0} x^{2} \ge 0$ still $\operatorname{USEFall}_{1}$
 $-1 \le \sin(\frac{\pi}{x}) \le 1$]

For all $X \neq 0$, $k \leq 1$. Therefore $-\chi^2 \leq \chi^2 \sin\left(\frac{\pi}{\chi}\right) \leq \chi^2$ (multiplied inequality Ly positive quantity XZ) Now $\lim_{x \to 0} x^2 = 0^2 = 0$, $\lim_{x \to 0} (x^2) = -0^2 = 0$ By the squeeze thm, $\lim \chi^2 \sin\left(\frac{\pi}{n}\right) = 0$ X-Jo as well.

(2) lim 8x=8-9=32 ×74 lim X2+16=92+16=32 Also, near 4, $8x \leq f(x) \leq x^2 + 16$ By the squeeze thm lim f(x)=32 to.



(= 'limit DNE, but fen blows up toward + 00" $\lim_{x \to 0^+} \frac{1}{x} = \infty$ lim 1 = - 00. X70- X = - 00. similarly Example: $f(x) = \frac{e^x}{x^2x}$. At which point might f blowup? -if x2-x20, ie if x20 or x=1 What happens? veriew: If function blows up (denominator >0, numerator > 70) need to check sign of f to see If we're going to a or - a.

If
$$x > 0, x$$
 close to $0,$
 e^{x} is close to $e^{0} = 1.$
 $x = x^{2} - x = x(x-1)$
is close to $-x$ since $x-1$
is close to -1 .
 $(or \cdot b(x) = \frac{e^{x}/1-x}{x}, \frac{e^{x}}{1-x} \frac{e^{-1}}{1-x})$
So if $x > 0, \frac{1}{x} = 0$ large,
 $\frac{e^{x}}{x^{2}-x}$ is regative & large
So $\lim_{x \to 0^{-1}} \frac{e^{x}}{x^{2}-x} = -\infty$
 $x \to 0$
Similar if $x < 0, \frac{e^{x}}{x(1-x)} = 0$
 $\frac{e^{x}}{x \to 0}$
So $\lim_{x \to 0^{-1}} \frac{e^{x}}{x^{2}-x} = -\infty$
 $x \to 0$
Similar if $x < 0, \frac{e^{x}}{x(1-x)} = 0$

Similarly rear
$$X=1$$
:
If X is close to A , $\frac{e^{X}}{X \times 91} \stackrel{e'}{1=e}$
So near $X=1$, $\frac{e^{X}(X)}{X-1} \stackrel{> 0}{1=0} \stackrel{if X<1}{1=0}$
So $\frac{e^{X}}{X(X-1)}$ blows up at $X=1$
with $\lim_{X \to 1^{+}} \frac{e^{X}}{X^{2}-X} = \infty$
 $\lim_{X \to 1^{-}} \frac{e^{X}}{X^{2}-X} = -\infty$
Try graph:
 $\lim_{X \to 1^{-}} \frac{e^{X}}{X^{2}-X} = -\infty$

Math 100 – WORKSHEET 3 INFINITE LIMITS AND LIMITS AT INFINITY

1. INFINITE LIMITS (1)(a) (Final, 2014) Evaluate $\lim_{x\to -3^+} \frac{x+2}{x+3}$. If x is close to -3, x+2 is close to -1, X73 is close to 0, 80 expression blows up at -3. 6f X>-3, X7320, $x_{+3} < 0$, so $y_{+3} = -a_1$ (b) Let $f(x) = \frac{x-3}{x^2+x-12}$. What is $\lim_{x\to \mathbf{X}} f(x)$? What about $\lim_{x\to -2^+} f(x)$, $\lim_{x\to 2^-} f(x)$? - • $f(x) = \frac{x-3}{(x-3)(x+q)} = \frac{1}{x+q}$, so f blows up at -4. If x>-4, 1 >0; if x<-4, 1 =0 L = a, lim = -a, X+q = a, lim X+q = -a, **X**D Date: 16/9/2021, Worksheet by Lior Silberman. This instructional m

in DNG, even in the extended SQBSE

(2) Evaluate
(a)
$$\lim_{x \to 1} \frac{1}{(x-1)^2}$$

This blows up of $X=1$, and $\frac{1}{(X-1)^2} > 0$
Near $X=1$, so
 $\lim_{x \to 1} \frac{1}{(X-1)^2} = 00$

(b) $\lim_{x \to 2} \frac{\sin x}{|x-2|}$

(c)
$$\lim_{x \to \frac{\pi}{2}^+} \tan x$$
, $\lim_{x \to \frac{\pi}{2}^-} \tan x$.

B limits at a Sometimes, clear that $f(x) \rightarrow \infty$ $x \rightarrow 0$ Examples: f(x) = x, $f(x) = \chi^2$ $f(n) = e^{x}$ also los x, vr Sometimes, clear that f(x) - 0 Loglog x $-\frac{1}{\chi^{3/2}}$

Interseting: Have a race: different parts of f "Pull" in different directions Example: $\frac{e^{\chi}}{\chi}$, $\chi^{-}\chi^{3}$, $\frac{\chi}{\chi^{2}+1}$, 5x71 3x72 Two goals: (1) "sat method !. Look & see who wins. 2) formal calculation Know: exponentials ex, e^{Sx}, e^{x/30} beat powerlaws x²⁰, x^{1/2}, which. + logarithms.

(reason: exponential asymptotically torgen that power law) x²-x³? Clearly x² is much larger than x3 (if x is large), so this will behave like x7 $\frac{X}{X^2+1} \sim_{\infty} \frac{X}{X^2} = \frac{1}{X} \xrightarrow{\to} 0$ (not acceptable as solution) $\frac{5x+1}{2x-2} \sim \frac{5x}{2x} = \frac{5}{2}$

(2) Acceptiable justification:
"extracting asymptotics":
Extracting asymptotics:
Example: look at
$$\chi^2 \times \chi^3$$
.
Our gut says χ^2 is dominant,
so we take common factor of χ^3 .
 $\chi^2 - \chi^3 = \chi^2 (1 - \frac{1}{\chi^4})$
Now $\chi^2 \to \infty$, $[-\frac{1}{\chi^2} \to (-0^{-1})]$
 $\chi^2 - \chi^3 \to \infty$, $[-\frac{1}{\chi^2} \to (-0^{-1})]$
 $\chi^2 - \chi^3 \to \infty$, $[-\frac{1}{\chi^2} \to (-0^{-1})]$
So $\chi^2 - \chi^3 \to \infty$, $[-\frac{1}{\chi^2} \to (-0^{-1})]$
But χ^2 is huge & Negative
So $\chi^2 - \chi^3 = \chi^2 (1 - \frac{1}{\chi^4}) \to -\infty$

Another example:

$$\lim_{x \to \infty} \frac{\$x + 1}{3x - 2} = \lim_{x \to \infty} \frac{x(5 + \frac{1}{x})}{x(3 - \frac{2}{x})} = \lim_{x \to \infty} \frac{5 + \frac{1}{x}}{3 - \frac{2}{x}}$$

$$= \frac{5 + 0}{3 - 0} = \frac{5}{3}.$$

2. LIMITS AT INFINITY

(1) Evaluate the following limits: (a) $\lim_{x \to \infty} \frac{x^2 + 1}{r - 3} =$ J. "sat": X2+1 ~ K2, X-3 ~ X $\frac{\chi^{2}+1}{\chi-3} = \frac{\chi^{2}(1+\frac{1}{\chi^{2}})}{\chi(1-\frac{3}{\chi})} = \chi \cdot \frac{1+\frac{1}{\chi^{2}}}{1-\frac{3}{\chi}}$ Because X-7~N, 1-1/2 1-3/m x

(b) (Final, 2015) $\lim_{x \to \infty} \frac{x+1}{x^2+2x-8} =$

$$\frac{\chi + 1}{\chi^{2} + 2\chi - 8} = \frac{\chi \left(1 + \frac{1}{\chi}\right)}{\chi^{2} \left(1 + \frac{2}{\chi} - \frac{8}{\chi^{2}}\right)} = \left(\frac{1}{\chi}\right) \cdot \frac{1}{1 + \frac{3}{\chi} - \frac{8}{\chi^{2}}}$$

$$\frac{\chi - 8}{\chi - 8} = 0.$$

$$\frac{1 + 0}{\chi - 9} = 0.$$

Vy2= 141 (c) (Quiz, 2015) $\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x} =$ [4x²+x v = 0+x², 30 J4x²+x v = 0 J4x²=[2x] 20 <u>3x</u> 19x²1x - 2x ² - ²x - ²x ² = ³/₄] everything on 3x Scale x. 3 14 x co, 1x2 - x ~)*C*A (d) $\lim_{x\to\infty} \frac{\sqrt{x^4 + \sin x}}{x^2 - \cos x} =$ X +Sinx ~X +Sinx $\sim \chi$ -COX $\sim \chi^2$ χ^2 χ^2 χ^2 χ^2 χ^2 χ^2 = 1 X⁹+Sinv VX I >> Sinx X+ $\frac{\sqrt{x^2}}{\chi^2} \frac{1}{\chi^2} + \frac{3in\chi}{\chi^4} = \frac{\sqrt{1+\frac{3in\chi}{\chi^2}}}{\sqrt{1-\frac{3in\chi}{\chi^2}}} = \frac{\sqrt{1+\frac{3in\chi}{\chi^2}}}{\sqrt{1-\frac{3in\chi}{\chi^2}}}$ (use squeezetting to show him sinx in x4=0 in x2=0, so overall set 110

(e)
$$\lim_{x\to\infty} (\sqrt{x^2 + 2x} - \sqrt{x^2 - 1}) =$$

 $(x_{+2x}^2, x_{-x}^2, \sqrt{x^2 - x}, x_{-x}^2, \sqrt{x^2 - x}, \sqrt{x^2 - x^2 - x^2$