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Math 223: Problem Set 2 (due 25/1/2021)

Practice problems (recommended, but do not submit)
• Study the method of solving linear equations introduced in section 1.4 and use it to solve prob-

lem 2 of section 1.4.
• Section 1.4, problems 1-5 (ignore matrices), 8, 12-13, 17-19.
• Section 1.5, problems 1,2 (ignore matrices), 4, 9, 10

Linear dependence and independence

1. Let u =

(
a
b

)
,v =

(
c
d

)
∈ R2 and suppose that u 6= 0. Show that v is not dependent on u iff

ad−bc 6= 0.

2. In each of the following problems either exhibit the given vector as a linear combination of elements
of the set or show that this is impossible (cf. PS1 problem 2).

(a) V = R3, S =


 1

0
1

 ,

 1
1
0

, v =

 −4
−2
0

 (b) Same V,S but v =

 −4
−2
−2

.

(c) V = R2, S =

{(
a
b

)
,

(
c
d

)}
such that ad−bc 6= 0, v =

(
e
f

)
.

3. More on spans.
(a) Let W = Span(S) where S is as in 2(a). Identify W as the set of triples which solve a single

equation in three variables.
(b) Let T =

{
xk+1− xk}∞

k=0 ⊂ R[x]. Show that Span(T )⊂ {p ∈ R[x] | p(1) = 0}.
(*c) Show equality in (b).
(d) Let R =

{
1+ xk}∞

k=1 ⊂ R[x] (that is, R is the set of polynomials 1+ x,1+ x2,1+ x3, · · · ). Show
that this set is linearly independent.

(e) Give (with proof)! a simple criterion, similar to the one in part (b), for whether a polynomial is
in Span(S).

4. For each vector in the set S = {(0,0,0,0),(0,0,3,0),(1,1,0,1),(2,2,0,0),(0,0,0,−1)} ⊂R4 decide
whether that vector is dependent or independent of the other vectors in S.

*5. Let S ⊂ R[x] be a set of non-zero polynomials, no two of which have the same degree. Show that S
is linearly independent.
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The “minimal dependent subset” trick
The following result (6(d)) is a uniqueness result, very handy in proving linear independence.

6. Let V be a vector space, and let S ⊂ V be linearly dependent. Let S′ ⊂ S be a linearly dependent
subset of the smallest possible size, and enumerate its elements as S′ = {vi}

n
i=1 (so n is the size of S′

and the vi are distinct, in particular n≥ 1).
(a) Show that S contains a finite subset which is linearly dependent (this is a test of understanding

the definitions)
RMK Part (a) justifies the existence of S′.
(b) By definition of linear dependence there are scalars {ai}n

i=1⊂R not all zero so that ∑
n
i=1 aivi = 0.

Show that all the ai are non-zero.
(c) Conclude from (b) that every vector of S′ depends on the other vectors.
(*d) Suppose that there existed other scalars bi so that also ∑

n
i=1 bivi = 0. Show that there is a single

scalar t such that bi = tai for all 1≤ i≤ n.

**7. (Linear independence of functions) Some differential calculus will be used here.
(a) Let r1, . . . ,rn be distinct real numbers. Show that the set of functions {erix}n

i=1 is independent in
RR.

(b) Fix a < b and consider the infinite set {cos(rx),sin(rx)}r>0∪{1} of functions on [a,b] (you can
treat 1 as the function cos(0x)). Show that this set is linearly independent.

Supplementary problem: Independence in direct sums
A Before thinking more about direct sums, meditate on the following: by breaking every vector in

Rn+m into its first n and last m coordinates, you can identify Rn+m with Rn⊕Rm. Now do the same
problem twice:
(a) Let n,m ≥ 1 and let S1,S2 ⊂ Rn+m be two linearly independent subsets. Suppose that every

vector in S1 is supported in the first n coordinates, and that every vector in S2 is supported in the
last m coordinates. Show that S1 ∪ S2 is also linearly independent. If n = 2, m = 1 this means

that vectors from S1 look like

 ∗∗
0

 and vectors in S2 look like

 0
0
∗

.

(b) Let V,W be two vector spaces. Let S1 ⊂ V and S2 ⊂W be linearly independent. Show that
{(v,0) | v ∈ S1}∪{(0,w) | w ∈ S2} is linearly independent in V ⊕W .

RMK To understand every problem about direct sums consider it first in setting of part (a). Then try
the general case.
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Hint for 5: (1) In a linear combination of polynomials from S, consider the polynomial of highest
degree appearing with a non-zero coefficient. (2) Try to see what happens if S =

{
1+1,1+ x,1+ x2}.

Supplementary problem: another construction
A. (Quotient vector spaces) Let V be a vector space, W a subspace.

(a) Define a relation · ≡ · (W ) (read “congruent mod W”) on V by v ≡ v′ (W ) ⇐⇒ (v− v′) ∈
W . Show that this relation is an equivalence relation, that is that it is reflexive, symmetric and
transitive.

(b) For a vector v ∈V let v+W denote the set of sums {v+w | w ∈W}. Show that v+W = v′+W
iff v+W ∩ v′+W 6= /0 iff v− v′ ∈W . In particular show that if v′ ∈ v+W then v′+W = v+W .
These subsets are the equivalence classes of the relation from part (a) and are called cosets mod
W or affine subspaces.

(c) Show that if v≡ v′ (W ) and u≡ u′ (W ) and a,b ∈ R then av+bu≡ av′+bu′ (W ).
DEF Let V/W = {v+W | v ∈V} be the set of cosets mod W . Define addition and scalar multiplica-

tion on V/W by (v+W )+(u+W )
def
= (v+u)+W and a(v+W )

def
= (av)+W .

(d) Use (c) to show that the operation is well-defined – that if v+W = v′+W and u+W = u′+W
then (v+ u)+W = (v′+ u′)+W so that the sum of two cosets comes out the same no matter
which vector is chosen to represent the coset.

(e) Show that V/W with these operations is a vector space, known as the quotient vector space V/W .
Supplementary problems: finite fields

Let p be a prime number. Define addition and multiplication on {0,1, · · · , p−1}as follows: a+p b= c
and a · pb = d if c (resp. d) is the remainder obtained when dividing a+b (resp. ab) by p.
B. (Elementary calculations)

(a) Show that these operations are associative and commutative, that 0 is neutral for addition, that 1
is netural for multiplication.

(b) Show that if 1 < a < p then a+p (p− a) = 0, and conclude that additive inverses exist in this
system.

(c) Show that the distributive law holds.
(d) Show that for every integer n, np−n is divisible by p.

Hint: Induction on n, using the binomial formula and that p|
(p

k

)
if 0 < k < p.

(e) Show that for every integer a, if 1≤ a≤ p−1 then p|ap−1−1.
Hint: If p|xy but p - x then p|y.

(f) Show that for every integer a, 1 ≤ a ≤ p−1, ap−1 = 1 if we exponentiation means repeated · p
rather than repeated · .

(g) Conclude that every 1≤ a≤ p−1 has a multiplicative inverse.

DEFINITION. The field defined in problem B is called “the field with p elements” or “F p” and
denoted Fp.

C. Let (V,+) be set with an operation, and suppose all the axioms for addition in a vector space hold.
Suppose that for every v ∈V , ∑

p
i=1 v = 0 (i.e. if you add p copies of the same vector you always get

zero). Define av = ∑
a
i=1 v for all 0≤ a < p and show that this endows V with the structure of a vector

space over Fp.


