
Lior Silberman’s Math 412: Problem Set 6 (due 22/10/2019)

P1. (Minimal polynomials)

Let A =

(
1 2
3 4

)
, B =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

.

(a) Find the minimal polynomial of A and show that the minimal polynomial of B is x2 (x−1)2.
(b) Find a 3×3 matrix whose minimal polynomial is x2.

P2. For each of A,B find its eigenvalues and the correpsonding generalized eigenspaces.

Triangular matrices

P3. Let L be a lower-triangular square matrix with non-zero diagonal entries. Find a formula for
its inverse.

1. Let U be an upper-triangular square matrix with non-zero diagonal entries.
(a) Give a “backward-substitution” algorithm for solving Ux = b efficiently.

(b) Explicitely use your algorithm to solve

1 4 5
2 6

3

x
y
z

=

7
8
9

.

(c) For a general upper-triangular U give a formula for U−1, proving in particular that U is
invertible and that U−1 is again upper-triangular.

RMK We’ll see that if A ⊂ Mn(F) is a subspace containing the identity matrix and closed
under matrix multiplication, then the inverse of any matrix inA belongs toA. This applies,
in particular, to the set of upper-triangular matrices.

The minimal polynomial

2. Let D ∈Mn(F) = diag(a1, . . . ,an) be diagonal.
(a) For any polynomial p ∈ F [x] show that p(D) = diag(p(a1), . . . , p(an)).
(b) Show that the minimal polynomial of D is mD(x) = ∏

r
j=1(x− ai j) where

{
ai j

}r
j=1 is an

enumeration of the distinct values among the ai.
(c) Show that (over any field) the matrix B from problem P1 is not similar to a diagonal matrix.
(d) Now suppose that U is an upper-triangular matrix with diagonal D. Show that for any

p ∈ F [x], p(U) has diagonal p(D). In particular, mD|mU .

3. Let T ∈End(V ) be diagonable. Show that every generalized eigenspace is simply an eigenspace.

4. Let S ∈ End(U), T ∈ End(V ). Let S⊕T ∈ End(U⊕V ) be the “block-diagonal map”.
(a) For f ∈ F [x] show that f (S⊕T ) = f (S)⊕ f (T ).
(b) Show that mS⊕T = lcm(mS,mT ) (“least common multiple”: the polynomial of smallest

degree which is a multiple of both).
(c) Conclude that SpecF(S⊕T ) = SpecF(S)∪SpecF(T ).
RMK See also problem B below.
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5. Let K/F be an extension of fields, let V be a finite-dimensional F-vectorpsace and let T ∈
EndF(V ). Show that the minimal and charcteristic polynomials of TK ∈EndK(VK) are identical
with those of T .

Extra credit

6. Let R ∈ End(U⊕V ) be “block-upper-triangular”, in that R(U)⊂U .
(a) Define a “quotient linear map” R̄ ∈ End(U⊕V/U).
(b) Let S be the restriction of R to U . Show that both mS, mR̄ divide mR.
(c) Let f = lcm[mS,mR̄] and set T = f (R). Show that T (U) = {0} and that T (V )⊂U .
(d) Show that T 2 = 0 and conclude that f | mR | f 2.
(e) Show that SpecF(R) = SpecF(S)∪SpecF(R̄).

Supplementary problems

A. (Cholesky decomposition)
(a) Let A be a positive-definite square matrix. Show that A= LL† for a unique lower-triangular

matrix L with positive entries on the diagonal.

DEF For ε ∈ ±1 define Dε ∈Mn(R) by Dε
i j =


ε j = i+ ε

−ε j = i
0 j 6= i, i+ ε

and let A =−D−D+ be the

(positive) discrete Laplace operator.
(b) To f ∈ C∞(0,1) associate the vector f ∈ Rn where f (i) = f ( i

n). Show that 1
nD+ f and

1
nD− f are both close to f ′ (so that both are discrete differentiation operators). Show that
1
n2 D−D+ is an approximation to the second derivative.

(c) Find a lower-triangular matrix L such that LL† = A.

B. Let T ∈ End(V ). For monic irreducible p ∈ F [x] define Vp =
{

v ∈V | ∃k : p(T )kv = 0
}

.
(a) Show that Vp is a T -invariant subspace of V and that mT �Vp = pk for some k ≥ 0, with

k ≥ 1 iff Vp 6= {0}. Conclude that pk|mT .
(b) Show that if {pi}r

i=1 ⊂ F [x] are distinct monic irreducibles then the sum
⊕r

i=1Vpi is direct.
(c) Let {pi}r

i=1 ⊂ F [x] be the prime factors of mT (x). Show that V =
⊕r

i=1Vpi .
(d) Suppose that mT (x) = ∏

r
i=1 pki

i (x) is the prime factorization of the minimal polynomial.
Show that Vpi = Ker pki

i (T ).
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Lior Silberman’s Math 412: Solutions to Problem Set 6

P1. (Minimal polynomials)

(a) A =

(
1 2
3 4

)
does not satisfy any linear polynomial (if aA + b Id = 0 then A = −b

a Id

would be scalar. However, A2 =

(
1 2
3 4

)(
1 2
3 4

)
=

(
7 10

15 22

)
=

(
5 10

15 20

)
+

(
2

2

)
=

5A+2I so A2−5A+2I = 0 and this is the minimal polynomial.

B=


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

 has B2 =


1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0




1 1 0 0
−1 −1 0 0
−2 −2 2 1
1 1 −1 0

=


0 0 0 0
0 0 0 0
−3 −3 3 2
2 2 −2 1


and (B−1)2 =


0 1 0 0
−1 −2 0 0
−2 −2 1 1
1 1 −1 −1




0 1 0 0
−1 −2 0 0
−2 −2 1 1
1 1 −1 −1

 =


−1 −2 0 0
2 3 0 0
1 1 0 0
0 0 0 0

. It

is then easy to check that B2(B−1)2 = 0. Thus the minimal polynomial must be a divisor
of x2(x−1)2, and by the unique factorization theorem for polynomials any such divisor di-

vides one of x2(x−1) and x(x−1)2. However, B2(B−1)=


0 0 0 0
0 0 0 0
−3 −3 3 2
2 2 −2 1




0 1 0 0
−1 −2 0 0
−2 −2 1 1
1 1 −1 −1

=


0 0 0 0
0 0 0 0
−1 ∗ ∗ ∗
∗ ∗ ∗ ∗

 6= 0 and similarly B(B−1)2 6= 0.

(b) Let N =

0 1 0
0 0 0
0 0 0

. Then N2 = 0 so the minimal polynomial is a divisor of x2. The only

proper divisor is x, and isn’t the mininal polynomial since N 6= 0.
P2. The eigenvalues are the roots of the minimal polynomial. For A these are 5±

√
17

2 . For B these
are 0,1. The generalized eigenspaces for A are simply the eigenspaces spanned by the eigen-
vectors. The rest of the discussion focuses on B.
Let U0 = KerB2, U1 = Ker(B−1)2. Adding 3

2 the last row to the third (assume 2 is invert-

ible) we see that


1 0 0 0
0 1 0 0
0 0 1 3/2
0 0 0 1




0 0 0 0
0 0 0 0
−3 −3 3 2
2 2 −2 1

 =


0 0 0 0
0 0 0 0
0 0 0 5/2
2 2 −2 1

. It follows

that U0 = {(x,y,x+ y,0)t} (in characteristic 2, B2 =


0 0 0 0
0 0 0 0
1 1 1 0
0 0 0 1

 and we get the same con-

clusion). Similarly, U1 = {(0,0,z,w)t}. Let V0,V1 be the generalized eigenspaces. Then
certainly U0 ⊂ V0 and U1 ⊂ V1. Also, U0,U1 are each 2-dimensional and their intersection is
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empty. It follows that the sum U0 +U1 is direct and 4-dimensional, that is F4 =U0⊕U1. This
means that V0 =U0 and V1 =U1: let v∈V0, for example. Then v = u0+u1 for uλ ∈Uλ . Apply
Bk for k ≥ 2 such that Bv = 0. Then also Bku0 = 0 and so Bku1 = 0. This contradicts B being
invertible on V1 unless u1 = 0 so that v = u0 ∈U0. Similarly, if v ∈ V1 then applying (B− I)k

to v shows that v ∈U1.
2. (a) We have D0 = Id = diag(1, . . . ,1) = diag

(
a0

1, . . . ,a
0
n
)
. Suppose that for some k ≥ 0 we

have Dk = diag
(
ak

1 . . . ,a
k
n
)
. Then Dk+1 = DDk = diag(ai)diag

(
ak

i
)
= diag

(
ak+1

i

)
. Finally,

let p(x) = ∑
K
k=0 αkxk. Then

p(D) =
K

∑
k=0

αkDk =
K

∑
k=0

αk diag
(

ak
i

)
=

K

∑
k=0

diag
(

αkak
i

)
= diag

(
K

∑
k=0

αkak
i

)
= diag(p(ai)) .

(b) Let pD(x) be the given polynomial. Then for each ai we have pD(ai) = 0 and hence
pD(D) = diag(0) = 0, so the minimal polynomial divides pD.On the other hand, each ai
is an eigenvalue of D, hence a zero of mD. It follows that mD = pD.

(c) Its minimal polynomial has multiple roots.
(d) Let U,U ′ be upper-triangular. We then have (αU +U ′)ii = αUii+U ′ii and, since Ui j = 0 if

j < i and U ′ji = 0 if j > i we have(
UU ′

)
ii = ∑

j
Ui jU ′ji = ∑

i≤ j≤i
Ui jU ′ji =UiiU ′ii .

Now the same induction argument as in (a) shows that (p(U))ii = p(Uii). In particular, if
p(U) = 0 then p(D) = 0 and so mD|mU .

3. Let Uλ ⊂V be the eigenspaces of T , Vλ the generalized eigenspaces.
(1) Fix an eigenbasis B ⊂ V . Now suppose that (T −λ )k v = 0 for some v ∈ V . We have

v = ∑
n
i=1 aivi for some ai ∈ F and vi ∈ B. Suppose T vi = λivi. Then

0 = (T −λ )k v =
n

∑
i=1

ai (λi−λ )k vi .

Since B is a basis it follows that ai (λi−λ )k = 0 for each i, and if λi 6= λ this means ai = 0.
It follows that

v = ∑
λi=λ

aivi ∈Uλ .

(2) We have Uλ ⊂ Vλ and at the same time V =
⊕

λ∈SpecF (T )Uλ (by assumption) and V =⊕
λ∈SpecF (T )Vλ (theorem from class). If V is finite-dimensional then we have

dimF V = ∑
λ

dimF Uλ ≤∑
λ

dimF Vλ = dimV

and we must therefore have equality throughout, that is dimF Uλ = dimF Vλ and Uλ =Vλ .
(3) For each λ let ιλ : Vλ →

⊕
λ Vλ be the standard map. Let W ⊂

⊕
λ Vλ be the internal direct

sum of the images of the Uλ . Composing with the quotient map
⊕

λ Vλ →
⊕

λ Vλ

/
W gives

a map
fλ : Vλ →

⊕
λ

Vλ

/⊕
λ

Uλ .
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Note that if v ∈Uλ then ιλ (v) is in W , and so fλ (v) = 0. It follows that fλ induces a map

f̄λ : Vλ/Uλ →
⊕

λ

Vλ

/⊕
λ

Uλ .

Finally, this family of maps induces a map

f̄ :
⊕

λ

(Vλ/Uλ )→
⊕

λ

Vλ

/⊕
λ

Uλ .

This is an isomorphism: if v∈
⊕

λ vλ then v=∑i vi for some vi ∈Vλi and then f̄
(
∑i
(
vi +Uλi

))
=

v+W , and if f̄
(
∑i
(
vi +Uλi

))
= 0 (λi distinct) then ∑i vi ∈W so each vi ∈ Uλi . Now

we are given that
⊕

λ Vλ

/⊕
λ Uλ is the zero space (both spaces are isomorphic to V ) so⊕

λ (Vλ/Uλ ) is zero, and hence for each λ Vλ/Uλ = {0} and Vλ =Uλ .
4. Let S ∈ End(U), T ∈ End(V ). Let S⊕T ∈ End(U⊕V ) be the “block-diagonal map”.

(a) Let S1,S2 ∈ End(U), T1,T2 ∈ End(V ) and let α ∈ F . Then

[α (S1⊕T1)+(S2⊕T2)] (u⊕ v) = α (S1⊕T1)(u⊕ v)+(S2⊕T2)(u⊕ v)
= α (S1u⊕T1v)+(S2u⊕T2v)
= (αS1 +S2)u⊕ (αT1 +T2)v
= [(αS1 +S2)⊕ (αT1 +T2)] (u⊕ v)

and

[(S1⊕T1)(S2⊕T2)] (u⊕ v) = (S1⊕T1)(S2u⊕T2v)
= (S1S2u)⊕ (T1T2v)
= (S1S2⊕T1T2)(u⊕ v) .

Now from the second claim it follows by induction on k that (S⊕T )k = Sk⊕T k, and then
it follows by induction on n that

n

∑
k=0

αk (S⊕T )k =
n

∑
k=0

αk

(
Sk⊕T k

)
=

(
n

∑
k=0

αkT k

)
⊕

(
n

∑
k=0

αkSk

)
.

(b) Let f = lcm(mS,mT ). Then f (S) = 0 and f (T ) = 0 ( f is a multiple of the respective mini-
mal polynomials), and hence f (S⊕T ) = f (S)⊕ f (T ) = 0⊕0, so f is divisible by the min-
imal polynomial of S⊕T . Conversely, we have mS⊕T (S⊕T ) = mS⊕T (S)⊕mS⊕T (T ) = 0
so mS⊕T (S) = 0 and mS⊕T (T ) = 0. It follows that mS⊕T is divisible by both mS and mT ,
hence by their least common multiple.

(c) Clearly if mS(λ ) = 0 or mT (λ ) = 0 then f (λ ) = 0 (it’s a multiple). For the converse, let
λ be a root of f , but not of mS or mT . Then x−λ divides f by not mS or mT , so both mS

and mT divide f (x)
x−λ

, contradicting the minimality of f .
5. Let R ∈ End(U⊕V ) be “block-upper-triangular”, in that R(U)⊂U .

(a) In general, if T ∈ End(W ) and Z ⊂W is T -stable then setting T̄ (w+Z) = T w+Z gives a
linear map.

(b) For any polynomial f and any u ∈U we have f (R)u = f (S)u, by the same induction as
the in the problems above. In particular, if f (R) = 0 then f (S) = 0 and mS| f . Similarly,
for w ∈U⊕V , f (R)(w+U) = f (R)w+U so that f (R̄) = f (R). In particular, if f (R) = 0
then f (R̄) = 0 and mR̄| f .
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(c) Let f = lcm[mS,mR̄] and set T = f (R). Since mS| f we have f (S) = 0. Then for u ∈U we
have T u = f (S)u = 0, so T (U) = 0. For the same reason, f (R̄) = 0, that is T̄ = 0 which
means T (V )⊂U .

(d) Let T (V ) ⊂U and T (U) = 0 we have T 2 = 0, so f 2(R) = 0 and hence mR| f 2. We have
already seen that f |mR.

(e) Since f |mR| f 2, any root of f is a root of mR and any root of mR is a root of f 2. But f , f 2

have the same roots.
Supplementary problems

A. (c) Let

Li j =


√

i+1
i j = i

−
√

i−1
i j = i−1

0 j 6= i, i−1

.

Then (
LL†
)

ik
= ∑

j
Li jLk j = LiiLki +Li,i−1Lk,i−1

=



0−
√

i−1
i

√
i

i−1 k = i−1(√
i+1

i

)2

+

(
−
√

i−1
i

)2

k = i√
i+1

i ·
(
−
√

i
i+1

)
+0 k = i+1

0 |i− k| ≥ 2

=


2 k = i
−1 |k− i|= 1
0 |k− i| ≥ 2

= (−A)ik .

B. Let T ∈ End(V ). For monic irreducible p ∈ F [x] define Vp =
{

v ∈V | ∃k : p(T )kv = 0
}

.
(a) For a polynomial q(x) we have xq(x) = q(x)x. Then T q(T ) = q(T )T . In particular, if

v ∈ Kerq(T ) then q(T )T v = T q(T )v = 0 and hence T v ∈ Kerq(T ) as well. We assume
that V is finite-dimensional, so each Vp is. In particular let {vi}

n
i=1 ⊂ Vp be a basis, and

let k be large enough such that p(T )kvi = 0 for each i. Then SpanF {vi}
n
i=1 ⊂ Ker p(T )k.

But Ker p(T )k ⊂ Vp by definition, so Vp = Ker p(T )k. It follows that mT �Vp|pk. Since
p is irreducible, each divisor of pk has the form pk′ for some k′ ≤ k. If Vp = {0} then
mT �Vp = 1. Otherwise, IdVp is not the zero map so mT �Vp 6= 1 and k′ ≥ 1. In any case,
mT (T �Vp) = mT (T ) �Vp = 0 shows that pk′ = mT �Vp |mT .

(b) Let p,q ∈ F [x] be relatively prime (for example p irreducible and not dividing q). We will
show that q(T ) is invertible on Vp. We have Vp =

⋃
∞
k=0 Ker(pk(T )), so it is enough to show

that q(T ) is invertible on each Ker
(

pk(T )
)
. Since q is prime to p, it is prime to pk for each

k. Since F [x] is a PID, there are α(x),β (x) ∈ F [x] such that αq+β pk = 1. Then on U =
Ker(pk(T )) we have 1 = α(T �U)q(T �U)+β (T �U)pk(T �U) = α(T �U)q(T �U),
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so q(T ) is indeed invertible on Ker(pk(T )).
Now, let B ⊂ F [x] be a set of monic irreducibles, and let W = ∑p∈BVp. We need to show
the sum is direct. For this, let ∑

m
i=1 vi = 0 be a minimal dependence where vi ∈ Vpi for

some distinct pi ∈ B. Let km be such that pkm
m (T )vm = 0. We then have

m−1

∑
i=1

pkm
m (T )vi = 0 .

Since pkm
m is prime to pi for i < m, pkm

m (T ) is invertible on Vpi so pkm
m (T )vi 6= 0. This

contradicts the minimality of the original combination.
(c) Let W =

⊕r
i=1Vpi and suppose that Z =V/W is non-zero. Since W is T -invariant we have

a quotient map T̄ on Z. Since V/W is non-zero, we have 1 6= mT̄ |mT . In particular, mT̄ has
some irreducible factor, without loss of generality p1. Thus let v ∈V have non-zero image
in Zp1 . Then ∏

r
i=2 pki

i (T ) is invertible in Zp1 so ∏
r
i=2 pki

i (T )v has non-zero image there. It
follows that u = ∏

r
i=2 pki

i (T )v /∈W . But pk1
1 (T )u = mT (T )u = 0 shows that u ∈Vp1 ⊂W ,

a contradiction.
(d) Since mT �Vpi

|mT and has pi as its unique irreducible divisor, we have mT �Vpi
|pki

i . This

pki
i (T � Vpi) = 0 and Vpi ⊂ Ker pki

i (T ). The reverse containment holds by definition. We
remark that ki is the minimal value for which this is true: if pki−1

i (T ) vanished in Vpi then
pki−1

i (T )∏ j 6=i pk j
j (T ) would vanish in

⊕r
j=1Vp j =V , contradicting the minimality of mT .
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Lior Silberman’s Math 412: Problem set 7 (due 2/11/2017)

Practice

P1. Find the characteristic and minimal polynomial of each matrix:
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,


5 0 0 0 0 0
0 4 0 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

,


5 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

.

P2. Show that

0 1 α

0 0 1
0 0 0

,

0 1 0
0 0 1
0 0 0

 are similar. Generalize to higher dimensions.

The Jordan Canonical Form

1. For each of the following matrices, (i) find the characteristic polynomial and eigenvalues (over
the complex numbers), (ii) find the eigenspaces and generalized eigenspaces, (iii) find a Jordan
basis and the Jordan form.

A =


1 2 1 0
−2 1 0 1
0 0 1 2
0 0 −2 1

, B =


0 1 −1 0
0 0 0 −1
1 0 0 1
0 1 0 0

, C =


1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1

 .

RMK I suggest computing by hand first even if you later check your answers with a CAS.

2. Suppose the characteristic polynomial of T is x(x−1)3(x−3)4.
(a) What are the possible minimal polynomials?
(b) What are the possible Jordan forms?

3. Let T,S ∈ EndF(V ).
(a) Suppose that T,S are similar. Show that mT (x) = mS(x).
(b) Prove or disprove: if mT (x) = mS(x) and pT (x) = pS(x) then T,S are similar.

4. Let F be algebraically closed of characteristic zero. Show that every g ∈ GLn(F) has a square
root, in that g = h2 for some h ∈ GLn(F).

5. Let V be finite-dimensional, and let A ⊂ EndF(V ) be an F-subalgebra, that is a subspace
containing the identity map and closed under multiplication (composition). Suppose that T ∈
A is invertible in EndF(V ). Show that T−1 ∈ A.

(extra credit problem on reverse)
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Extra credit
6. (The additive Jordan decomposition) Let V be a finite-dimensional vector space, and let T ∈

EndF(V ).
DEF An additive Jordan decomposition of T is an expression T = S+N where S ∈ EndF(V )

is diagonable, N ∈ EndF(V ) is nilpotent, and S,N commute.
(a) Suppose that F is algebraically closed. Separating the Jordan form into its diagonal and

off-diagonal parts, show that T has an additive Jordan decomposition.
(b) Let S,S′ ∈ EndF(V ) be diagonable and suppose that S,S′ commute. Show that S+ S′ is

diagonable.
(c) Show that a nilpotent diagonable linear transformation vanishes.
(d) Suppose that T has two additive Jordan decompositions T = S+N = S′+N′. Show that

S = S′ and N = N′.

Supplementary problems: `p spaces

A. For v ∈ Cn and 1≤ p≤ ∞ let ‖v‖p be as defined in class.
(a) For 1 < p < ∞ define 1 < q < ∞ by 1

p +
1
q = 1 (also if p = 1 set q = ∞ and if p = ∞ set

q = 1). Given x ∈ C let y(x) = x̄
|x| |x|

p/q (set y = 0 if x = 0), and given a vector x ∈ Cn

define a vector yanalogously.
(i) Show that

∥∥y
∥∥

q = ‖x‖
p/q
p .

(ii) Show that for this particular choice of vy, |∑n
i=1 xiyi|= ‖x‖p

∥∥y
∥∥

q
(b) Now let u,v ∈ Cn and let 1 ≤ p ≤ ∞. Show that |∑n

i=1 uivi| ≤ ‖u‖p ‖v‖q (this is called
Hölder’s inequality).

(c) Conlude that ‖u‖p = max
{
|∑n

i=1 uivi| | ‖v‖q = 1
}

.
(d) Show that ‖u‖p is a seminorm (hint: A(c)) and then that it is a norm.
(e) Show that limp→∞ ‖v‖p = ‖v‖∞

(this is why the supremum norm is usually called the L∞

norm).

B. Let X be a set. For 1 ≤ p < ∞ set `p(X) = { f : X → C | ∑x∈X | f (x)|p < ∞}, and also set
`∞(X) = { f : X → C | f bounded}.
(a) Show that for f ∈ `p(X) and g∈ `q(X) (q as in A(a)) we have f g∈ `1(X) and |∑x∈X f (x)g(x)| ≤
‖ f‖p ‖g‖q.

(b) Show that `p(X) are subspaces of CX , and that ‖ f‖p = (∑x∈X | f (x)|p)
1/p is a norm on

`p(X)
(c) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence. Show that for each x ∈ X , { fn(x)}∞

n=1 ⊂C is
a Cauchy sequence.

(d) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence and let f (x) = limn→∞ fn(x). Show that f ∈
`p(X).

(e) Let { fn}∞

n=1 ⊂ `p(X) be a Cauchy sequence. Show that it is convergent in `p(X).

Hint for B(d): Suppose that ‖ f‖p = ∞. Then there is a finite set S ⊂ X with (∑x∈S | f (x)|p)
1/p ≥

limn→∞ ‖ fn‖+1.
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Lior Silberman’s Math 412: Solutions to Problem set 7

Practice

P1. For A =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, A− I =


0 1 0 0
0 0 0 0
0 0 0 01

2 exp(it)+ 1
2 exp(−it)

0 0 0 0

 so (A− I)2 = 0 and

the minimal polynomial is (x−1)2. The characteristic polynomial must then be (x−1)4.

For B=


5 0 0 0 0 0
0 4 0 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

we have V5 =Span{e1}, V4 =Span{e2}, V2 =Span{e3, . . . ,e6}

(B−5,B−4,(B−2)2 vanish on the respective spaces, and they sum to F6). The minimal
polynomial is therefore (x−5)(x−4)(x−2)2. The characteristic polynomials on the re-
spective spaces are (x−5) ,(x−4) ,(x−2)4 so on their direct sum is (x−5)(x−4)(x−2)4.

For C =


5 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

 we have V5 = Span{e1}, V2 = Span{e2, . . . ,e6} (C− 5,(C−

2)3 vanish on the respective spaces, and they sum to F6). The minimal polynomial is then
(x−5)(x−2)3 and the characteristic polynomial (x−5)(x−2)5.

P2. Let N =

0 1 0
0 0 1
0 0 0

. Then Ne1 = 0, Ne2 = e1 and N (e3 +αe2)= e2+αe3. Clearly {e1,e2,e3 +αe2}

is another basis for F3, so N is similar to A =

0 1 α

0 0 1
0 0 0

. More generally, let A be a strictly

upper-triangular matrix with non-zero entries right above the main diagonal. Then A is simi-
lar to the Jordan block N of the same size (ones above the main diagonal, zeroes elsewhere).
For this let vn = en, and for 0 ≤ k ≤ n− 1 set vn−k = Akvn. We show by induction on k that
vn−k ∈ Span{ei}

n−k
i=1 and that the coefficient of ek is the product ∏

k
j=1 an− j,n− j+1. For k = 0

the claim is evident. Suppose the claim for k. Since A is strictly upper-triangular, we have
Aem ∈ Span{ei}

m−1
i=1 . Thus if

vn−k =

(
k

∏
j=1

an− j,n− j+1

)
en−k +

n−k−1

∑
i=1

αiei
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then

vn−k−1 =

(
k

∏
j=1

an− j,n− j+1

)
Aen−k +

n−k−1

∑
i=1

αiAei

∈

(
k

∏
j=1

an− j,n− j+1

)
n−k−1

∑
i=1

ai,n−kei +Span
{

e j
}n−k−2

j=1

=

(
k

∏
j=1

an− j,n− j+1

)
an−k−1,n−ken−k−1 +Span

{
e j
}n−k−2

j=1

=

(
k+1

∏
j=1

an− j,n− j+1

)
en−k−1 +Span

{
e j
}n−k−2

j=1

which is the claim for k+1. Since the ai,i+1 are non-zero it follows that v1 =
(
∏

n−1
i=1 ai,i+1

)
e1

is non-zero while Av1 = 0, so {vi}
n
i=1 is a Jordan block for A and A is similar to N.

1. (a)

det(x Id−A) = det


x−1 −2 −1 0

2 x−1 0 −1
0 0 x−1 −2
0 0 2 x−1

= det


(

x−1 −2
2 x−1

) (
−1

−1

)
(

x−1 −2
2 x−1

)


=

(
det
(

x−1 −2
2 x−1

))2

=
(
(x−1)2 +4

)2
=
(
x2−2x+5

)2

= (x−λ )2 (x− λ̄
)2

where λ = 1+2i. We find some eigenvectors:

A−λ Id =


−2i 2 1 0
−2 −2i 0 1
0 0 −2i 2
0 0 −2 −2i


so its eigenvectors must take the form (x,y,z, iz) where −2ix+2y+ z = 0, so (x, ix− z/2,z, iz)
that is

Vλ ⊃ SpanC




1
i
0
0

 ,


0
−1/2

1
i


 .

Taking complex conjugates we find

V
λ̄
⊃ SpanC




1
−i
0
0

 ,


0
−1/2

1
−i


 .
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Since the whole space is 4-dimensional, we have the eigenbasis




1
i
0
0

 ,


0
−1/2

1
i

 ,


1
−i
0
0

 ,


0
−1/2

1
−i




so that
A = SDS−1

where S =


1 0 1 0
i −1/2 −i −1/2
0 1 0 1
0 i 0 −i

 and D = diag(1+2i,1+2i,1−2i,1−2i).

(b) det(Id−Bx) = det


x −1 1 0
0 x 0 1
−1 0 x −1
0 −1 0 x

= x

∣∣∣∣∣∣
x 1

x −1
−1 x

∣∣∣∣∣∣−
∣∣∣∣∣∣
−1 1 1
x 0 −1
−1 0 x

∣∣∣∣∣∣= x2
∣∣∣∣x −1

x

∣∣∣∣+
x
∣∣∣∣ x
−1 x

∣∣∣∣+ ∣∣∣∣ x 1
−1 x

∣∣∣∣ = x4 + x2 +
(
x2 +1

)
=
(
x2 +1

)2. The eigenvalues are therefore ±i.

We have

B− i Id =


−i 1 −1 0
0 −i 0 −1
1 0 −i 1
0 1 0 −i

 .

Row reduction gives:

B− i Id∼


0 1 0 i
0 −i 0 −1
1 0 −i 1
0 0 0 0

∼


0 1 0 i
0 0 0 −2
1 0 −i 1
0 2 0 0

∼


0 1 0 0
0 0 0 −2
1 0 −i 0
0 0 0 0



so Vi⊃SpanC




i
0
1
0


 and similarly V−i⊃SpanC



−i
0
1
0


. Now (B− i)2 =


−2 −2i 2i −2
0 −2 0 2i
−2i 2 −2 −2i

0 −2i 0 −2


so (B− i)2


0
i
0
1

 = 0 also. Since (B− i)


0
i
0
1

 =


i
0
1
0

 so Vi ⊃ Span




i
0
1
0

 ,


0
i
0
1


.

Similarly V−i ⊃ Span



−i
0
1
0

 ,


0
−i
0
1


 and since the whole space is 4-dimensional we

conclude that Span




i
0
1
0

 ,


0
i
0
1


 ,Span



−i
0
1
0

 ,


0
−i
0
1


 as the two Jordan block.
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