Lior Silberman's Math 412: Problem Set 4 (due 5/10/2017)

Practice

P1. Let U, V be vector spaces and let $U_{1} \subset U, V_{1} \subset V$ be subspaces.
(a) "Naturally" embed $U_{1} \otimes V_{1}$ in $U \otimes V$.
(b) Is $(U \otimes V) /\left(U_{1} \otimes V_{1}\right)$ isomorphic to $\left(U / U_{1}\right) \otimes\left(V / V_{1}\right)$?

P2. Let (\cdot, \cdot) be a non-degenerate bilinear form on a finite-dimensional vector space U, defined by the isomorphism $g: U \rightarrow U^{\prime}$ via $(\underline{u}, \underline{v}) \stackrel{\text { def }}{=}(g \underline{u})(\underline{v})$.
(a) For $T \in \operatorname{End}(U)$ define $T^{\dagger}=g^{-1} T^{\prime} g$ where T^{\prime} is the dual map. Show that $T^{\dagger} \in \operatorname{End}(U)$ satisfies $(\underline{u}, T \underline{v})=\left(T^{\dagger} \underline{u}, \underline{v}\right)$ for all $\underline{u}, \underline{v} \in V$.
(b) Show that $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$.
(c) Show that the matrix of T^{\dagger} wrt an (\cdot, \cdot)-orthonormal basis is the transpose of the matrix of T in that basis.

Bilinear forms

In problems 1,2 we assume 2 is invertible in F and fix F-vector spaces V, W.

1. (Alternating pairings and symplectic forms) Let V, W be vector spaces, and let $[\cdot, \cdot]: V \times V \rightarrow$ W be a bilinear map.
(a) Show that $(\forall \underline{u}, \underline{v} \in V:[\underline{u}, \underline{v}]=-[\underline{v}, \underline{u}]) \leftrightarrow(\forall \underline{u} \in V:[\underline{u}, \underline{u}]=0)$ (Hint: consider $\underline{u}+\underline{v})$. DEF A form satisfying either property is alternating. We now suppose $[\cdot, \cdot]$ is alternating. PRAC Show that the radical $R=\{\underline{u} \in V \mid \forall \underline{v} \in V:[\underline{u}, \underline{v}]=0\}$ of the form is a subspace.
(b) The form $[\cdot, \cdot]$ is called non-degenerate if its radical is $\{\underline{0}\}$. Show that setting $[\underline{u}+R, \underline{v}+R] \stackrel{\text { def }}{=}$ $[\underline{u}, \underline{v}]$ defines a non-degenerate alternating bilinear map $(V / R) \times(V / R) \rightarrow W$.
RMK Note that you need to justify each claim, starting with "defines".
2. (Darboux's Theorem) Suppose now that V is finite-dimensional, and that $[\cdot, \cdot]: V \times V \rightarrow F$ is a non-degenerate alternating form.
DEF The orthogonal complement of a subspace $U \subset V$ is a set $U^{\perp}=\{\underline{v} \in V \mid \forall \underline{u} \in U:[\underline{u}, \underline{v}]=0\}$. PRAC Show that U^{\perp} is a subspace of V.
(a) Show that the restriction of $[\cdot, \cdot]$ to U is non-degenerate iff $U \cap U^{\perp}=\{\underline{0}\}$.
(*b) Suppose that the conditions of (b) hold. Show that $V=U \oplus U^{\perp}$, and that the restriction of $[\cdot, \cdot]$ to U^{\perp} is non-degenerate.
(c) Let $\underline{u} \in V$ be non-zero. Show that there is $\underline{u}^{\prime} \in V$ such that $\left[\underline{u}, \underline{u^{\prime}}\right] \neq 0$. Find a basis $\left\{\underline{u}_{1}, \underline{v}_{1}\right\}$ to $U=\operatorname{Span}\left\{\underline{u}, \underline{u^{\prime}}\right\}$ in which the matrix of $[\cdot, \cdot]$ is $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
(d) Show that $\operatorname{dim}_{F} V=2 n$ for some n, and that V has a basis $\left\{\underline{u}_{i}, \underline{v}_{i}\right\}_{i=1}^{n}$ in which the matrix of $[\cdot, \cdot]$ is block-diagonal, with each 2×2 block of the form from (d).
RECAP Only even-dimensional spaces have non-degenerate alternating forms, and up to choice of basis, there is only one such form.

Tensor products

3. For finite-dimensional U, V construct a natural isomorphism $\operatorname{End}(U \otimes V) \rightarrow \operatorname{Hom}(U, U \otimes \operatorname{End}(V))$.

SUPP Generalize this to a natural isomorphism $\operatorname{Hom}\left(U \otimes V_{1}, U \otimes V_{2}\right) \rightarrow \operatorname{Hom}\left(U, U \otimes \operatorname{Hom}\left(V_{1}, V_{2}\right)\right)$.
4. Let U, V be vector spaces with U finite-dimensional, and let $A \in \operatorname{Hom}(U, U \otimes V)$. Given a basis $\left\{\underline{u}_{j}\right\}_{j=1}^{\operatorname{dim} U}$ of U let $\underline{v}_{i j} \in V$ be defined by $A \underline{u}_{j}=\sum_{i=1}^{\operatorname{dim} U} \underline{u}_{i} \otimes \underline{v}_{i j}$ and define $\operatorname{Tr} A=\sum_{i=1}^{\operatorname{dim} U} \underline{v}_{i i}$. Show that this definition is independent of the choice of basis.

Extra credit

5. (Partial traces) Let U, V real vector spaces be equipped with non-degenerate inner products.
(a) Show that $\left\langle u_{1} \otimes v_{1}, u_{2} \otimes v_{2}\right\rangle_{U \otimes V} \stackrel{\text { def }}{=}\left\langle u_{1}, u_{2}\right\rangle_{U}\left\langle v_{1}, v_{2}\right\rangle_{V}$ induces an inner product on $U \otimes V$.
(b) Let $A \in \operatorname{End}(U), B \in \operatorname{End}(V)$. Show that $(A \otimes B)^{\dagger}=A^{\dagger} \otimes B^{\dagger}\left(A^{\dagger}, B^{\dagger}\right.$ are defined in P2).
(c) Let $P \in \operatorname{End}(U \otimes V)$, interpreted as an element of $\operatorname{Hom}(U, U \otimes \operatorname{End}(V))$ as in 3(a). Show that $\left(\operatorname{Tr}_{U} P\right)^{\dagger}=\operatorname{Tr}_{U}\left(P^{\dagger}\right)$.
(*d) [Thanks to J. Karczmarek] Let $\underline{w} \in U \otimes V$ be non-zero, and let $P_{\underline{w}} \in \operatorname{End}(U \otimes V)$ be the orthogonal projection on \underline{w}. It follows from 3(a) that $\operatorname{Tr}_{U} P_{\underline{w}} \in \operatorname{End}(V)$ and $\operatorname{Tr}_{V} P_{\underline{w}} \in$ $\operatorname{End}(U)$ are both Hermitian. Show that their non-zero eigenvalues are the same.

Supplementary problems

A. (Extension of scalars) Let $F \subset K$ be fields. Let V be an F-vectorspace.
(a) Considering K as an F-vectorspace (see PS1), we have the tensor product $V_{K}=K \otimes_{F} V$ (the subscript means "tensor product as F-vectorspaces"). For each $\alpha \in K$ set $\alpha(x \otimes \underline{v}) \stackrel{\text { def }}{=}$ $(\alpha x) \otimes \underline{v}$. Show that this extends to an F-linear map $K \otimes_{F} V \rightarrow K \otimes_{F} V$ giving V_{K} the structure of a K-vector space. This construction is called "extension of scalars"
(b) Let $\left\{\underline{v}_{i}\right\}_{i \in I} \subset V$ be a set of vectors. Show that it is linearly independent (resp. spanning) iff $\left\{1_{K} \otimes \underline{v}_{i}\right\}_{i \in I} \subset V_{K}$ is linearly independent (resp. spanning). Conclude that $\operatorname{dim}_{K}\left(K \otimes_{F} V\right)=$ $\operatorname{dim}_{F} V$.
(c) Let $V_{N}=\operatorname{Span}_{\mathbb{R}}\left(\{1\} \cup\{\cos (n x), \sin (n x)\}_{n=1}^{N}\right)$. Then $\frac{d}{d x}: V_{N} \rightarrow V_{N}$ is not diagonable. Find a different basis for $\mathbb{C} \otimes_{\mathbb{R}} V_{N}$ in which $\frac{d}{d x}$ is diagonal. Note that the elements of your basis are not "pure tensors", that is not of the form $a f(x)$ where $a \in \mathbb{C}$ and $f=\cos (n x)$ or $f=\sin (n x)$.
B. DEF: An F-algebra is a triple $\left(A, 1_{A}, \times\right)$ such that A is an F-vector space, $\left(A, 0_{A}, 1_{A}+, \times\right)$ is a ring, and (compatibility of structures) for any $a \in F$ and $x, y \in A$ we have $a \cdot(x \times y)=$ $(a \cdot x) \times y=x \times(a \cdot y)$. Because of the compatibility from now on we won't distinguish the multiplication in A and scalar multiplication by elements of F.
(a) Verify that \mathbb{C} is an \mathbb{R}-algebra, and that $M_{n}(F)$ is an F-algebra for all F.
(b) More generally, verify that if R is a ring, and $F \subset R$ is a subfield then R has the structure of an F-algebra. Similarly, that $\operatorname{End}_{F}(V)$ is an F-algebra for any vector space V.
(c) Let A, B be F-algebras. Give $A \otimes_{F} B$ the structure of an F-algebra.
(d) Show that the map $F \rightarrow A$ given by $a \mapsto a \cdot 1_{A}$ gives an embedding of F-algebars $F \hookrightarrow A$.
(e) (Extension of scalars for algebras) Let K be an extension of F. Give $K \otimes_{F} A$ the structure of a K-algebra.
(f) Show that for V finite-dimensional, $K \otimes_{F} \operatorname{End}_{F}(V) \simeq \operatorname{End}_{K}\left(K \otimes_{F} V\right)$.
C. The center $Z(A)$ of a ring is the set of elements that commute with the whole ring.
(a) Show that the center of an F-algebra is an F-subspace, containing the subspace $F \cdot 1_{A}$.
(b) Show that the image of $Z(A) \otimes Z(B)$ in $A \otimes B$ is exactly the center of that algebra.

