Lior Silberman's Math 412: Problem Set 2 (due 24/9/2019)

Practice

- P1 Let $\{V_i\}_{i \in I}$ be a family of vector spaces, and let $A_i \in \text{End}(V_i) = \text{Hom}(V_i, V_i)$.
 - (a) Show that there is a unique element $\bigoplus_{i \in I} A_i \in \text{End}(\bigoplus_{i \in I} V_i)$ whose restriction to the image of V_i in the sum is A_i .
 - (b) Carefully show that the matrix of $\bigoplus_{i \in I} A_i$ in an appropriate basis is block-diagonal.
- P2 Construct a vector space W and three subspaces U, V_1, V_2 such that $W = U \oplus V_1 = U \oplus V_2$ (internal direct sums) but $V_1 \neq V_2$.

Direct sums

- 1. Give an example of $V_1, V_2, V_3 \subset W$ where $V_i \cap V_j = \{\underline{0}\}$ for every $i \neq j$ yet the sum $V_1 + V_2 + V_3$ is not direct.
- 2. (Diagonability)
 - DEF A square matrix $A \in M_n(F)$ is diagonable (over F) if there exists an invertible matrix $S \in GL_n(F)$ such that SMS^{-1} is diagonal.
 - (a) Show that $A \in M_n(F)$ is diagonable iff there exist *n* one-dimensional subspaces $V_i \subset F^n$ such $F^n = \bigoplus_{i=1}^n V_i$ and $A(V_i) \subset V_i$ for all *i*.
 - (b) Let $T \in \operatorname{End}_F(V)$. For each $\lambda \in F$ let $V_{\lambda} = \operatorname{Ker}(T \lambda)$ be the corresponding eigenspace. Let $\operatorname{Spec}_F(T) = \{\lambda \in F \mid V_{\lambda} \neq \{0\}\}$ be the set of eigenvalues of T. Show that the sum $\sum_{\lambda \in \operatorname{Spec}_F(T)} V_{\lambda}$ is direct.
 - (c) Call $T \in \text{End}_F(V)$ diagonable if its matrix with respect to some basis is diagonable. Show that *T* is diagonable iff $\sum_{\lambda \in \text{Spec}_F(T)} V_{\lambda} = V$.
- 3*. Let $\{V_i\}_{i=1}^r$ be subspaces of W with $\sum_{i=1}^r \dim(V_i) > (r-1) \dim W$. Show that $\bigcap_{i=1}^r V_i \neq \{\underline{0}\}$.

Quotients

- 4. Write $M_n(F)$ for the space of $n \times n$ matrices with entries in F. Let $\mathfrak{sl}_n(F) = \{A \in M_n(F) \mid \operatorname{Tr} A = 0\}$ and let $\mathfrak{pgl}_n(F) = M_n(F)/F \cdot I_n$ (matrices modulu scalar matrices). Suppose that n is invertible in F (equivalently, that the characteristic of F does not divide n). Show that the quotient map $M_n(F) \to \mathfrak{pgl}_n(F)$ restricts to an isomorphism $\mathfrak{sl}_n(F) \to \mathfrak{pgl}_n(F)$.
- 5. (Quotients and complements) Let W be a vector space and let U ⊂ W be a subspace.
 (a) Show that there exists another subspace V ⊂ W such that W = U ⊕ V. DEF We say V is a *complement* for U (in W).
 - (b) Let *V* be a complement for *U* and let $\pi: W \to W/U$ be the quotient map. Show that the restriction of π to *V* is an isomorphism.
 - (c) Conclude that if V_1, V_2 are both complements then $V_1 \simeq V_2$ (c.f. problem P2)
 - REM A subspace will have many complements, while the quotient is "canonical".

Extra credit

- 6. (Structure of quotients) Let $V \subset W$ with quotient map $\pi: W \to W/V$.
 - (a) Show that mapping $U \mapsto \pi(U)$ gives a bijection between (1) the set of subspaces of *W* containing *V* and (2) the set of subspaces of *W*/*V*.
 - (b) (The universal property) Let Z be another vector space. Show that $f \mapsto f \circ \pi$ gives a linear bijection $\operatorname{Hom}(W/V, Z) \to \{g \in \operatorname{Hom}(W, Z) \mid V \subset \operatorname{Ker} g\}$.
- 7. For $f: \mathbb{R}^n \to \mathbb{R}$ the *Lipschitz constant* of f is the (possibly infinite) number

$$\|f\|_{\operatorname{Lip}} \stackrel{\text{def}}{=} \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|} \mid x, y \in \mathbb{R}^n, x \neq y \right\}.$$

Let $\operatorname{Lip}(\mathbb{R}^n) = \left\{ f \colon \mathbb{R}^n \to \mathbb{R} \mid ||f||_{\operatorname{Lip}} < \infty \right\}$ be the space of *Lipschitz functions*. PRA Show that $f \in \operatorname{Lip}(\mathbb{R}^n)$ iff there is *C* such that $|f(x) - f(y)| \le C |x - y|$ for all $x, y \in \mathbb{R}^n$.

- (a) Show that $\operatorname{Lip}(\mathbb{R}^n)$ is a vector space.
- (b) Let 1 be the constant function 1. Show that $||f||_{\text{Lip}}$ descends to a function on $\text{Lip}(\mathbb{R}^n)/\mathbb{R}^1$.
- (c) For $\bar{f} \in \operatorname{Lip}(\mathbb{R}^n)/\mathbb{R}\mathbb{1}$ show that $\|\bar{f}\|_{\operatorname{Lip}} = 0$ iff $\bar{f} = 0$.

Supplement: Infinite direct sums and products

CONSTRUCTION. Let $\{V_i\}_{i \in I}$ be a (possibly infinite) family of vector spaces.

- (1) The direct product $\prod_{i \in I} V_i$ is the vector space whose underlying space is $\{f : I \to \bigcup_{i \in I} V_i \mid \forall i : f(i) \in V_i\}$ with the operations of pointwise addition and scalar multiplication.
- (2) The direct sum $\bigoplus_{i \in i} V_i$ is the subspace $\{f \in \prod_{i \in I} V_i \mid \#\{i \mid f(i) \neq \underline{0}_{V_i}\} < \infty\}$ of finitely supported functions.
- A. (Tedium)
 - (a) Show that the direct product is a vector space
 - (b) Show that the direct sum is a subspace.
 - (c) Let $\pi_i: \prod_{j \in I} V_j \to V_i$ be the projection on the *i*th coordinate $(\pi_i(f) = f(i))$. Show that π_i are surjective linear maps. $\begin{cases} v & i = i \end{cases}$
 - Show that π_i are surjective linear maps. (d) Let $\sigma_i \colon V_i \to \prod_{i \in I} V_i$ be the map such that $\sigma_i(\underline{v})(j) = \begin{cases} \underline{v} & j = i \\ \underline{0} & j \neq i \end{cases}$.

Show that σ_i are injective linear maps.

- B. (Meat) Let Z be another vector space.
 - (a) Show that $\bigoplus_{i \in I} V_i$ is the internal direct sum of the images $\sigma_i(V_i)$.
 - (b) Suppose for each $i \in I$ we are given $f_i \in \text{Hom}(V_i, Z)$. Show that there is a unique $f \in \text{Hom}(\bigoplus_{i \in I} V_i)$ such that $f \circ \sigma_i = f_i$.
 - (c) You are instead given $g_i \in \text{Hom}(Z, V_i)$. Show that there is a unique $g \in \text{Hom}(Z, \prod_i V_i)$ such that $\pi_i \circ g = g_i$ for all *i*.
- C. (What a universal property can do) Let *S* be a vector space equipped with maps $\sigma'_i : V_i \to S$, and suppose the property of 5(b) holds (for every choice of $f_i \in \text{Hom}(V_i, Z)$ there is a unique $f \in \text{Hom}(S, Z)$...)
 - (a) Show that each σ'_i is injective (hint: take $Z = V_j$, f_j the identity map, $f_i = 0$ if $i \neq j$).
 - (b) Show that the images of the σ'_i span *S*.
 - (c) Show that S is the internal direct sum of the S_i .

- (d) (There is only one direct sum) Show that there is a unique isomorphism $\varphi \colon S \to \bigoplus_{i \in I} V_i$ such that $\varphi \circ \sigma'_i = \sigma_i$ (hint: construct φ by assumption, and a reverse map using the existence part of 5(b); to see that the composition is the identity use the uniqueness of the assumption and of 5(b), depending on the order of composition).
- D. Now let *P* be a vector space equipped with maps $\pi'_i \colon P \to V_i$ such that 5(c) holds.
 - (a) Show that π'_i are surjective.
 - (b) Show that there is a unique isomorphism $\psi: P \to \prod_{i \in I} V_i$ such that $\pi_i \circ \psi = \pi'_i$.

Supplement: universal properties

- E. A *free abelian group* is a pair (F,S) where F is an abelian group, $S \subset F$, and ("universal property") for any abelian group A and any (set) map $f: S \to A$ there is a unique group homomorphism $\overline{f}: G \to A$ such that $\overline{f}(s) = f(s)$ for any $s \in S$. The size #S is called the *rank* of the free abelian group.
 - (a) Show that $(\mathbb{Z}, \{1\})$ is a free abelian group.
 - (b) Show that $\left(\mathbb{Z}^d, \{\underline{e}_k\}_{k=1}^d\right)$ is a free abelian group.
 - (c) Let (F,S), (F',S') be free abelian groups and let $f: S \to S'$ be a bijection. Show that f extends to a unique isomorphism $\overline{f}: F \to F'$.
 - (d) Let (F,S) be a free abelian group. Show that S generates F.
 - (e) Show that every element of a free abelian group has infinite order.

Supplement: Lipschitz functions

DEFINITION. Let $(X, d_X), (Y, d_Y)$ be metric spaces, and let $f: X \to Y$ be a function. We say f is a *Lipschitz function* (or is "Lipschitz continuous") if for some C and for all $x, x' \in X$ we have

$$d_Y(f(x), f(x')) \leq C d_X(x, x')$$
.

Write $\operatorname{Lip}(X, Y)$ for the space of Lipschitz continuous functions, and for $f \in \operatorname{Lip}(X, Y)$ write $||f||_{\operatorname{Lip}} = \sup \left\{ \frac{d_Y(f(x), f(x'))}{d_X(x, x')} \mid x \neq x' \in X \right\}$ for its *Lipschitz constant*.

- F. (Analysis)
 - (a) Show that Lipschitz functions are continuous.
 - (b) Let $f \in C^1(\mathbb{R}^n; \mathbb{R})$. Show that $||f||_{\text{Lip}} = \sup\{|\nabla f(x)| : x \in \mathbb{R}^n\}$.
 - (c) Generalize 7(a),(b),(c) to the case of $Lip(X,\mathbb{R})$ where X is any metric space.
 - (d) Show that $\operatorname{Lip}(X, \mathbb{R})/\mathbb{R}^1$ is a complete normed space for all metric spaces X.