Math 100 - SOLUTIONS TO WORKSHEET 23 ANTIDERIVATIVES

1. Warmup: inverse operations

(1) (Multiplication)
(a) Calculate: $7 \times 8=$
(b) Find (some) a, b such that $a b=15$.
(2) (Trig functions)
(a) Calculate: $\sin \frac{\pi}{3}=$
(b) Find all θ such that $\sin \theta=1$.

Solution: $\frac{\pi}{2}+2 \pi \mathbb{Z}$ or $\left\{\frac{\pi}{2}+2 \pi k\right\}_{k \in \mathbb{Z}}$.
(3) Simple differentiation
(a) Find one f such that $f^{\prime}(x)=1$.

Solution: $f(x)=x$ works.
(b) Find all such f.

Solution: $f(x)=x+C$ where C is an arbitrary constant.
(c) Find the f such that $f(7)=3$.

Solution: We need $7+C=3$ so $C=-4$ and hence $f(x)=x-4$.

2. Antidifferentiation by massaging

(4) Find f such that $f^{\prime}(x)=2 x^{3}$.

Solution: We know the derivative of x^{4} is $4 x^{3}$, so the derivative of $\frac{1}{2} x^{4}$ is $2 x^{3}$ as desired.
(5) Find f such that $f^{\prime}(x)=-\frac{1}{x}$.

Solution: We know the derivative of $\log |x|$ is $\frac{1}{x}$, so the derivative of $-\log |x|$ is $-\frac{1}{x}$.
(6) Find all f such that $f^{\prime}(x)=\cos 3 x$.

Solution: The derivative of $\sin x$ is $\cos x$, so the derivative of $\sin 3 x$ is $3 \cos 3 x$ and the derivative of $\frac{1}{3} \sin 3 x$ is $\cos 3 x$.

3. Combinations

(7) (Final, 2015) Find a function $f(x)$ such that $f^{\prime}(x)=\sin x+\frac{2}{\sqrt{x}}$ and $f(\pi)=0$.

Solution: We know $(\cos x)^{\prime}=-\sin x$. Also, $\left(x^{1 / 2}\right)^{\prime}=\frac{1}{2 \sqrt{x}}$. The general antiderivative is therefore

$$
f(x)=-\cos x+4 \sqrt{x}+C
$$

To determine the constant we evaluate at π :

$$
0=f(\pi)=-\cos \pi+4 \sqrt{\pi}+C=1+4 \sqrt{\pi}+C .
$$

We therefore have $C=-1-4 \sqrt{\pi}$ and

$$
f(x)=-\cos x+4 \sqrt{x}+1-4 \sqrt{\pi} .
$$

(8) (Final, 2016) Find the general antiderivative of $f(x)=e^{2 x+3}$.

Solution: Write $f(x)=e^{3} e^{2 x}$. Since the derivative of e^{x} is e^{x} the derivative of $e^{2 x}$ is $2 e^{2 x}$ and $f(x)=\frac{1}{2} e^{3} e^{2 x}+C$.
(9) Find f such that $f^{\prime}(x)=\frac{6 x^{4}-2 x-2}{x^{2}}$.

Solution: We have $\frac{6 x^{4}-2 x-2}{x^{2}}=6 x^{2}-\frac{2}{x}-\frac{2}{x^{2}}$. Since the derivative of x^{3} is $3 x^{2}$, since the derivative of $\log |x|$ is $\frac{1}{x}$ and since the derivative of $\frac{1}{x}$ is $-\frac{1}{x^{2}}$ we may use

$$
f(x)=2 x^{3}-2 \log |x|+\frac{2}{x}
$$

(10) Find f such that $f^{\prime}(x)=2 x^{1 / 3}-x^{-2 / 3}$ and $f(1000)=5$.

Solution: Since $\left(x^{4 / 3}\right)^{\prime}=\frac{4}{3} x^{1 / 3}$ and $\left(x^{1 / 3}\right)^{\prime}=\frac{1}{3} x^{-2 / 3}$ the general solutions is

$$
f(x)=2 \cdot \frac{3}{4} x^{4 / 3}-3 x^{1 / 3}+c
$$

To get the specific solution we solve using $(1000)^{1 / 3}=10$:

$$
\begin{aligned}
5 & =f(1000)=\frac{3}{2}(1000)^{4 / 3}-3(1000)^{1 / 3}+c \\
& =\frac{3}{2} 10^{4}-30+c
\end{aligned}
$$

so

$$
c=35-15,000=-14,965
$$

and

$$
f(x)=\frac{3}{2} x^{4 / 3}-3 x^{1 / 3}-14,965
$$

(11) Find f such that $f^{\prime \prime}(x)=\sin x+\cos x, f(0)=0$ and $f^{\prime}(0)=1$.

Solution: Since $\left(f^{\prime}\right)^{\prime}(x)=\sin x+\cos x, f^{\prime}(x)=-\cos x+\sin x+c$. Now $f^{\prime}(0)=-1+0+c=1$ so $c=2$ and $f^{\prime}(x)=-\cos x+\sin x+2$. From this we get $f(x)=-\sin x-\cos x+2 x+d$ for some d. We also need $f(0)=-0-1+0+d=0$ so $d=1$ and

$$
f(x)=-\sin x-\cos x+2 x+1
$$

