## Math 100 - SOLUTIONS TO WORKSHEET 22 L'HÔPITAL'S RULE

(1) Evaluate $\lim _{x \rightarrow 1} \frac{\log x}{x-1}$.

Solution: Since $\lim _{x \rightarrow 1} \log x=\log 1=0$ and $\lim _{x \rightarrow 1} x-1=1-1=0$ and since both the numerator and denominator are differentiable we apply l'Hôpital's rule and get:

$$
\lim _{x \rightarrow 1} \frac{\log x}{x-1}=\lim _{x \rightarrow 1} \frac{1 / x}{1}=\lim _{x \rightarrow 1} \frac{1}{x}=1
$$

(2) (Final, 2014) Evaluate $\lim _{x \rightarrow 0} \frac{\cos x-e^{x^{2}}}{x^{2}}$.

Solution: We apply l'Hôpital's rule twice to get:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos x-e^{x^{2}}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{-\sin x-2 x e^{x^{2}}}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{-\cos x-2 e^{x^{2}}+4 x^{2} e^{x^{2}}}{2} \\
& =\frac{-\cos 0-2 e^{0}+0}{2}=-\frac{3}{2}
\end{aligned}
$$

The use of the rule is justified since $\lim _{x \rightarrow 0}\left(\cos x-e^{x^{2}}\right)=\cos 0-e^{0}=0, \lim _{x \rightarrow 0}\left(-\sin x-2 x e^{x^{2}}\right)=$ $-\sin 0-0=0$ and $\lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0} 2 x=0$.
(3) Do (2) using a 2 nd-order Taylor expansion.

Solution: To second order we have $\cos x \approx 1-\frac{x^{2}}{2}$ and $e^{u} \approx 1+u+\frac{u^{2}}{2}$ so $e^{x^{2}} \approx 1+x^{2}$. We therefore have $\cos x-e^{x^{2}} \approx\left(1-\frac{x^{2}}{2}\right)-\left(1+x^{2}\right)=-\frac{3}{2} x^{2}$. We therefore have $\frac{\cos x-e^{x^{2}}}{x^{2}} \approx-\frac{3}{2}$ to zeroth order.
(4) (Final, 2015) Evaluate $\lim _{x \rightarrow 0} \frac{\log (1+x)-\sin x}{x^{2}}$.

Solution: We apply l'Hôpital's rule twice to get:

$$
\lim _{x \rightarrow 0} \frac{\log (1+x)-\sin x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}-\cos x}{2 x}=\lim _{x \rightarrow 0} \frac{-\frac{1}{(1+x)^{2}}+\sin x}{2}=-\frac{1}{2}
$$

The use of the rule is justified since $\lim _{x \rightarrow 0}(\log (1+x)-\sin x)=\log 1-\sin 0=0, \lim _{x \rightarrow 0}\left(\frac{1}{1+x}-\cos x\right)=$ $\frac{1}{1}-\cos 0=0$ and $\lim _{x \rightarrow 0} x^{2}=\lim _{x \rightarrow 0} 2 x=0$.

Remark: To third order we have $\log (1+x) \approx x-\frac{x^{2}}{2}+\frac{x^{3}}{3}$ and $\sin x=x-\frac{x^{3}}{6}$ so, to first order,

$$
\frac{\log (1+x)-\sin x}{x^{2}} \approx \frac{\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)-\left(x-\frac{x^{3}}{6}\right)}{x^{2}}=\frac{-\frac{x^{2}}{2}+\frac{1}{2} x^{3}}{x^{2}}=-\frac{1}{2}+\frac{1}{2} x \underset{x \rightarrow 0}{ } \frac{1}{2}
$$

(5) Given that $f(2)=5, g(2)=3, f^{\prime}(2)=7$ and $g^{\prime}(2)=4$ find $\lim _{x \rightarrow 3} \frac{f(2 x-4)-g(x-1)-2}{g\left(x^{2}-7\right)-3}$.

Solution: Since $f, g$ are differentiable at 2 , they are continuous there and

$$
\begin{aligned}
\lim _{x \rightarrow 3}(f(2 x-4)-g(x-1)-2) & =f(6-4)-g(3-1)-2=f(2)-g(2)-2=5-3-2=0 \\
\lim _{x \rightarrow 3}\left(g\left(x^{2}-7\right)-3\right) & =g(9-7)-3=g(2)-3=3-3=0
\end{aligned}
$$

By arithmetic of derivatives the numerator and denominator are differentiable at $x=3$ and we may therefore apply l'Hopital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{f(2 x-4)-g(x-1)-2}{g\left(x^{2}-7\right)-3} & =\lim _{x \rightarrow 3} \frac{2 f^{\prime}(2 x-4)-g^{\prime}(x-1)}{2 x g^{\prime}\left(x^{2}-7\right)} \\
& =\frac{2 f^{\prime}(2)-g^{\prime}(2)}{2 \cdot 3 \cdot g^{\prime}(2)}=\frac{2 \cdot 7-4}{6 \cdot 4}=\frac{10}{24}=\frac{5}{12} .
\end{aligned}
$$

(6) Evaluate $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}$.

Solution: Since $e^{x} \xrightarrow[x \rightarrow 0]{ } e^{0}=1$ while $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$ we have $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}=\infty$.
(7) Evaluate $\lim _{x \rightarrow \infty} x^{2} e^{-x}$.

Solution: We have $x^{2} e^{-x}=\frac{x^{2}}{e^{x}}$ and as $x \rightarrow \infty$ both numerator and denominator diverge to $\infty$. The same holds for $2 x$. We may therefore apply l'Hôpital's rule twice and get:

$$
\lim _{x \rightarrow \infty} x^{2} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0
$$

(8) Evaluate $\lim _{x \rightarrow 0^{+}} x \log x$.

Solution: We have $x \log x=\frac{\log x}{1 / x}$ and as $x \rightarrow 0^{+}$both numerator and denominator diverge $\left(\log x\right.$ to $-\infty, \frac{1}{x}$ to $\left.\infty\right)$. We may therefore apply l'Hôpital's rule twice and get:

$$
\lim _{x \rightarrow 0^{+}} x \log x=\lim _{x \rightarrow 0^{+}} \frac{\log x}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}(-x)=0
$$

(9) Evaluate $\lim _{x \rightarrow 0}(2 x+1)^{1 / \sin x}$.

Solution: We have $(2 x+1)^{1 / \sin x}=e^{\frac{\log (2 x+1)}{\sin x}}$. Now since the function $e^{u}$ is continuous it's enough to compute $\lim _{x \rightarrow 0} \frac{\log (2 x+1)}{\sin x}$. As $x \rightarrow 0, \log (2 x+1) \rightarrow \log 1=0$ and $\sin x \rightarrow \sin 0=0$ so we may apply l'Hôpital's rule and get

$$
\lim _{x \rightarrow 0} \frac{\log (2 x+1)}{\sin x}=\lim _{x \rightarrow 0} \frac{\frac{2}{2 x+1}}{\cos x}=\lim _{x \rightarrow 0} \frac{2}{(2 x+1) \cos x}=\frac{2}{\cos 0}=2
$$

We therefore have

$$
\lim _{x \rightarrow 0}(2 x+1)^{1 / \sin x}=\lim _{x \rightarrow 0} e^{\frac{\log (2 x+1)}{\sin x}} e^{\lim _{x \rightarrow 0} \frac{\log (2 x+1)}{\sin x}}=e^{2} .
$$

(10) Evaluate $\lim _{x \rightarrow \infty} x^{n} e^{-x}$.

Solution: We note that for every $k>0, \lim _{x \rightarrow \infty} x^{k}=\infty$ and similarly $\lim _{x \rightarrow \infty} e^{x}=\infty$. We therefore apply l'Hôpital's rule $n$ times to get:

$$
\lim _{x \rightarrow \infty} x^{n} e^{-x}=\lim _{x \rightarrow \infty} \frac{x^{n}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{n x^{n-1}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{n(n-1) x^{n-2}}{e^{x}}=\cdots=\lim _{x \rightarrow \infty} \frac{n!}{e^{x}}=0
$$

(11) Suppose $a>0$. Evaluate $\lim _{x \rightarrow \infty} x^{-a} \log x$.

Solution: We have $x^{-a} \log x=\frac{\log x}{x^{a}}$ and as $x \rightarrow \infty$ both numerator and denominator diverge to $\infty$. We may therefore apply l'Hôpital's rule get:

$$
\lim _{x \rightarrow \infty} \frac{\log x}{x^{a}}=\lim _{x \rightarrow \infty} \frac{1 / x}{a x^{a-1}}=\lim _{x \rightarrow \infty} \frac{1}{a x^{a}}=0
$$

since $a>0$.

