Math 100 - WORKSHEET 21 OPTIMIZATION

Problem-solving steps: (0) read carefully, draw picture; (1) fix coordinate system, name variables; (3) enforce relations; (4) calculus; (5) endgame.
(1) (Final 2012) The right-angled triangle $\triangle A B P$ has the vertex $A=(-1,0)$, a vertex P on the semicircle $y=\sqrt{1-x^{2}}$, and another vertex B on the x-axis with the right angle at B. What is the largest possible area of this triangle?
(2) (Final 2010) A river running east-west is 6 km wide. City A is located on the shore of the river; city B is located 8 km to the east on the opposite bank. It costs $\$ 40 / \mathrm{km}$ to build a bridge across the river, $\$ 20 / \mathrm{km}$ to build a road along it. What is the cheapest way to construct a path between the cities?

