Math 100 - SOLUTIONS TO WORKSHEET 21
 OPTIMIZATION

(1) (Final 2012) The right-angled triangle $\triangle A B P$ has the vertex $A=(-1,0)$, a vertex P on the semicircle $y=\sqrt{1-x^{2}}$, and another vertex B on the x-axis with the right angle at B. What is the largest possible area of this triangle?

Solution: (0) Picture

(1) Put the coordinate system where the centre of the circle is at $(0,0)$ and the diameter is on the x-axis. Let B be at $(x, 0), P$ at (x, y).
(2) Since P is on the circle we have $y=\sqrt{1-x^{2}}$. The area of the triangle is then $A=\frac{1}{2}$ (base) \times (height) $=\frac{1}{2}(1+x) \sqrt{1-x^{2}}$ since the base of the triangle has length $1+x$.
(4) The function $A(x)$ is continuous on $[-1,1]$ so we can find its minimum by differentiation. By the product rule and chain rule,

$$
\begin{aligned}
A^{\prime}(x) & =\frac{1}{2} \sqrt{1-x^{2}}+\frac{1}{2}(1+x) \frac{-2 x}{2 \sqrt{1-x^{2}}} \\
& =\frac{\left(\sqrt{1-x^{2}}\right)^{2}}{2 \sqrt{1-x^{2}}}-\frac{x(1+x)}{2 \sqrt{1-x^{2}}}=\frac{1-x^{2}-x-x^{2}}{2 \sqrt{1-x^{2}}} \\
& =\frac{1-x-2 x^{2}}{2 \sqrt{1-x^{2}}}
\end{aligned}
$$

This is defined on $(-1,1)$ and the critical points satisfy $2 x^{2}+x-1=0$ so they are $x=\frac{-1 \pm \sqrt{1+8}}{4}=$ $\frac{-1 \pm 3}{4}=-1, \frac{1}{2}$. The only critical point in the interior is then $x=\frac{1}{2}$. The area vanishes at the endpoints (the triangle becomes degenerate) and

$$
A\left(\frac{1}{2}\right)=\frac{1}{2} \cdot \frac{3}{2} \cdot \sqrt{1-\frac{1}{2^{2}}}=\frac{3 \sqrt{3}}{8} .
$$

It follows that the largest possible area is $\frac{3 \sqrt{3}}{8}$.
(2) (Final 2010) A river running east-west is 6 km wide. City A is located on the shore of the river; city B is located 8 km to the east on the opposite bank. It costs $\$ 40 / \mathrm{km}$ to build a bridge across the river, $\$ 20 / \mathrm{km}$ to build a road along it. What is the cheapest way to construct a path between the cities?

Solution: (0) Picture

(1) Build a road of length x from A along the bank, then build a bridge of length d toward B.
(2) By Pythagoras, $d=\sqrt{6^{2}+(8-x)^{2}}$.
(3) The total cost is

$$
C(x)=20 x+40 \sqrt{6^{2}+(8-x)^{2}}=20 x+40 \sqrt{6^{2}+(x-8)^{2}} .
$$

(4) The function $C(x)$ is defined everywhere $\left(6^{2}+(8-x)^{2} \geq 6^{2}>0\right)$ and continuous there. We have

$$
C^{\prime}(x)=20+40 \frac{2(x-8)}{2 \sqrt{6^{2}+(x-8)^{2}}} .
$$

This exists everywhere (the denominator is everywhere positive by the same calculation). It's enough to consider $0 \leq x \leq 8$ (no point in starting the bridge west of A or east of B). Looking for critical points we solve $C^{\prime}(x)=0$ that is:

$$
\begin{aligned}
20+40 \frac{x-8}{\sqrt{36+(x-8)^{2}}} & =0 \\
20 & =40 \frac{8-x}{\sqrt{36+(8-x)^{2}}} \\
\sqrt{36+(8-x)^{2}} & =2(8-x) \\
36+(8-x)^{2} & =4(8-x)^{2} \\
36 & =3(8-x)^{2} \\
(8-x) & =\sqrt{\frac{36}{3}}=\sqrt{12}=2 \sqrt{3}
\end{aligned}
$$

(only the positive root since $0 \leq x \leq 8$ forces $8-x \geq 0$) so

$$
x=8-2 \sqrt{3} .
$$

We then have $C(0)=40 \sqrt{6^{2}+8^{2}}=40 \sqrt{100}=400, C(8)=20 \cdot 8+40 \sqrt{6^{2}}=160+240=400$ and

$$
\begin{aligned}
C(8-2 \sqrt{3}) & =20(8-2 \sqrt{3})+40 \sqrt{6^{2}+(2 \sqrt{3})^{2}}=160-40 \sqrt{3}+40 \sqrt{36+12} \\
& =160-40 \sqrt{3}+40 \sqrt{48}=160-40 \sqrt{3}+40 \sqrt{16 \cdot 3} \\
& =160-40 \sqrt{3}+40 \cdot 4 \sqrt{3}=160+120 \sqrt{3} .
\end{aligned}
$$

Now $\sqrt{3}<\sqrt{4}=2$ so $C(8-2 \sqrt{3})=160+120 \sqrt{3}<160+120 \cdot 2=400=C(0)=C(8)$ and we conclude that $C(8-2 \sqrt{3})$ is the minimum.
(5) The cheapest way to construct a bridge is construct a road of length $(8-2 \sqrt{3}) \mathrm{km}$ along the bank from A toward B, and then bridge from the end of the road to B.

