Math 100 – SOLUTIONS TO WORKSHEET 21 OPTIMIZATION

(1) (Final 2012) The right-angled triangle ΔABP has the vertex A = (-1, 0), a vertex P on the semicircle $y = \sqrt{1 - x^2}$, and another vertex B on the x-axis with the right angle at B. What is the largest possible area of this triangle?

(1) Put the coordinate system where the centre of the circle is at (0,0) and the diameter is on the x-axis. Let B be at (x,0), P at (x,y).

(2) Since P is on the circle we have $y = \sqrt{1-x^2}$. The area of the triangle is then $A = \frac{1}{2}$ (base) × (height) $= \frac{1}{2}(1+x)\sqrt{1-x^2}$ since the base of the triangle has length 1+x.

(4) The function A(x) is continuous on [-1, 1] so we can find its minimum by differentiation. By the product rule and chain rule,

$$\begin{aligned} A'(x) &= \frac{1}{2}\sqrt{1-x^2} + \frac{1}{2}(1+x)\frac{-2x}{2\sqrt{1-x^2}} \\ &= \frac{\left(\sqrt{1-x^2}\right)^2}{2\sqrt{1-x^2}} - \frac{x(1+x)}{2\sqrt{1-x^2}} = \frac{1-x^2-x-x^2}{2\sqrt{1-x^2}} \\ &= \frac{1-x-2x^2}{2\sqrt{1-x^2}} \,. \end{aligned}$$

This is defined on (-1,1) and the critical points satisfy $2x^2 + x - 1 = 0$ so they are $x = \frac{-1 \pm \sqrt{1+8}}{4} = \frac{-1 \pm 3}{4} = -1, \frac{1}{2}$. The only critical point in the interior is then $x = \frac{1}{2}$. The area vanishes at the endpoints (the triangle becomes degenerate) and

$$A\left(\frac{1}{2}\right) = \frac{1}{2} \cdot \frac{3}{2} \cdot \sqrt{1 - \frac{1}{2^2}} = \frac{3\sqrt{3}}{8}.$$

It follows that the largest possible area is $\frac{3\sqrt{3}}{8}$.

(2) (Final 2010) A river running east-west is 6km wide. City A is located on the shore of the river; city B is located 8km to the east on the opposite bank. It costs \$40/km to build a bridge across the river, \$20/km to build a road along it. What is the cheapest way to construct a path between the cities?

Date: 14/11/2019, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(1) Build a road of length x from A along the bank, then build a bridge of length d toward B.

- (2) By Pythagoras, $d = \sqrt{6^2 + (8 x)^2}$.
- (3) The total cost is

$$C(x) = 20x + 40\sqrt{6^2 + (8-x)^2} = 20x + 40\sqrt{6^2 + (x-8)^2}$$

(4) The function C(x) is defined everywhere $(6^2 + (8 - x)^2 \ge 6^2 > 0)$ and continuous there. We have

$$C'(x) = 20 + 40 \frac{2(x-8)}{2\sqrt{6^2 + (x-8)^2}}$$

This exists everywhere (the denominator is everywhere positive by the same calculation). It's enough to consider $0 \le x \le 8$ (no point in starting the bridge west of A or east of B). Looking for critical points we solve C'(x) = 0 that is:

$$20 + 40 \frac{x - 8}{\sqrt{36 + (x - 8)^2}} = 0$$

$$20 = 40 \frac{8 - x}{\sqrt{36 + (8 - x)^2}}$$

$$\sqrt{36 + (8 - x)^2} = 2(8 - x)$$

$$36 + (8 - x)^2 = 4(8 - x)^2$$

$$36 = 3(8 - x)^2$$

$$(8 - x) = \sqrt{\frac{36}{3}} = \sqrt{12} = 2\sqrt{3}$$

(only the positive root since $0 \le x \le 8$ forces $8 - x \ge 0$) so

$$x = 8 - 2\sqrt{3}.$$

We then have $C(0) = 40\sqrt{6^2 + 8^2} = 40\sqrt{100} = 400$, $C(8) = 20 \cdot 8 + 40\sqrt{6^2} = 160 + 240 = 400$ and

$$C(8-2\sqrt{3}) = 20\left(8-2\sqrt{3}\right) + 40\sqrt{6^2 + (2\sqrt{3})^2} = 160 - 40\sqrt{3} + 40\sqrt{36+12}$$

= 160 - 40\sqrt{3} + 40\sqrt{48} = 160 - 40\sqrt{3} + 40\sqrt{16\cdots}
= 160 - 40\sqrt{3} + 40\cdot 4\sqrt{3} = 160 + 120\sqrt{3}.

Now $\sqrt{3} < \sqrt{4} = 2$ so $C(8 - 2\sqrt{3}) = 160 + 120\sqrt{3} < 160 + 120 \cdot 2 = 400 = C(0) = C(8)$ and we conclude that $C(8 - 2\sqrt{3})$ is the minimum.

(5) The cheapest way to construct a bridge is construct a road of length $(8 - 2\sqrt{3})$ km along the bank from A toward B, and then bridge from the end of the road to B.