Math 100 - WORKSHEET 17 THE MEAN VALUE THEOREM

1. More minima and maxima

(1) Show that the function $f(x)=3 x^{3}+2 x-1+\sin x$ has no local maxima or minima. You may use that $f^{\prime}(x)=9 x^{2}+2+\cos x$.
(2) Let $g(x)=x e^{-x^{2} / 8}$ so that $g^{\prime}(x)=\left(1-\frac{x^{2}}{4}\right) e^{-x^{2} / 8}$, find the global minimum and maximum of g on $\begin{array}{ll}\text { (a) }[-1,4] & \text { (b) }[0, \infty)\end{array}$
(3) Find the critical numbers and singularities of $h(x)= \begin{cases}x^{3}-6 x^{2}+3 x & x \leq 3 \\ \sin (2 \pi x)-18 & x \geq 3\end{cases}$
(4) (Final, 2014) Find a such that $f(x)=\sin (a x)-x^{2}+2 x+3$ has a critical point at $x=0$.

2. Average slope vs Instantenous slope

(5) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
(6) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$

3. The Mean Value Theorem

Theorem. Let f be defined and differentiable on $[a, b]$. Then there is c between a, b such that $\frac{f(b)-f(a)}{b-a}=$ $f^{\prime}(c)$.
Equivalently, for any x there is c between a, x so that $f(x)=f(a)+f^{\prime}(c)(x-a)$.
(7) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that $f^{\prime}(c)=$?)
(8) (Final, 2015)
(a) Suppose $f, f^{\prime}, f^{\prime \prime}$ are all continuous. Suppose f has at least three zeroes. How many zeroes must $f^{\prime}, f^{\prime \prime}$ have?
(b) [Show that $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions]
(c) Show that the equation has at most two solutions.
(9) (Final, 2012) Suppose $f(1)=3$ and $-3 \leq f^{\prime}(x) \leq 2$ for $x \in[1,4]$. What can you say about $f(4)$?
(10) Show that $|\sin a-\sin b| \leq|a-b|$ for all a, b.
(11) Let $x>0$. Show that $e^{x}>1+x$ and that $\log (1+x) \leq x$.

