Math 100 - SOLUTIONS TO WORKSHEET 17 THE MEAN VALUE THEOREM

1. More minima and maxima

(1) Show that the function $f(x)=3 x^{3}+2 x-1+\sin x$ has no local maxima or minima. You may use that $f^{\prime}(x)=9 x^{2}+2+\cos x$.

Solution: f is everywhere differentiable, so it can only have a local extremum at a critical point. But for any x we have $f^{\prime}(x)=9 x^{2}+2+\cos x \geq 0+2-1=1>0$ so f has no critical points.
(2) Let $g(x)=x e^{-x^{2} / 8}$ so that $g^{\prime}(x)=\left(1-\frac{x^{2}}{4}\right) e^{-x^{2} / 8}$, find the global minimum and maximum of g on
(a) $[-1,4]$
(b) $[0, \infty)$

Solution: $\quad g$ is everywhere differentiable, and it has critical points at $x= \pm 2$. We now calculate: $g(-1)=-e^{-1 / 8}, g(0)=0, g(2)=2 e^{-1 / 2}, g(4)=4 e^{-2}$. First of all

$$
g(2)=\frac{2}{\sqrt{e}}>\frac{2}{\sqrt{4}}=\frac{4}{2^{2}}>\frac{4}{e^{2}}=g(4)
$$

so the maximum on $[-1,4]$ is $g(2)=\frac{2}{\sqrt{e}}$, while the minimum there is clearly $g(-1)=-e^{-1 / 8}$ being the only negative value among the four. Since the function is positive on $(0, \infty)$ its minimum on $[0, \infty)$ is $g(0)=0$. Now g is decreasing for $x>2$ (the derivative is negative) so the maximum must occur before then. But then it must be at the critical point 2 , so the maximum is $f(2)=\frac{2}{\sqrt{e}}$.
(3) Find the critical numbers and singularities of $h(x)= \begin{cases}x^{3}-6 x^{2}+3 x & x \leq 3 \\ \sin (2 \pi x)-18 & x \geq 3\end{cases}$

Solution: For $x \leq 3, h^{\prime}(x)=3 x^{2}-6 x+3=3(x-1)^{2}$ with a singular point at $x=1$. For $x \geq 3$ $f^{\prime}(x)=2 \pi \cos (2 \pi x)$ with critical points at $x=3 \frac{1}{4}+\frac{1}{2} \mathbb{Z}_{\geq 0}$. Also, $x=3$ might be a singular point.
(4) (Final, 2014) Find a such that $f(x)=\sin (a x)-x^{2}+2 x+3$ has a critical point at $x=0$.

Solution: $\quad f^{\prime}(x)=a \cos (a x)-2 x+2$ so $f^{\prime}(0)=a \cos (0)-2 \cdot 0+2=a+2$ so $f^{\prime}(0)=0$ iff $a=-2$.

2. Average slope vs Instantenous slope

(5) Let $f(x)=e^{x}$ on the interval $[0,1]$. Find all values of c so that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.

Solution: $\quad \frac{f(1)-f(0)}{1-0}=\frac{e-1}{1}=e-1$ and $f^{\prime}(x)=e^{x}$ so if $e^{c}=e-1$ we have $c=\log (e-1)$ and indeed $1<e-1<e$ means $0<\log (e-1)<1$.
(6) Let $f(x)=|x|$ on the interval $[-1,2]$. Find all values of c so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2-(-1)}$

Solution: There is no such value: $\frac{f(2)-f(-1)}{2-(-1)}=\frac{2-1}{3}=\frac{1}{3}$ but $f^{\prime}(x)$ only takes the values ± 1.

3. The Mean Value Theorem

(7) Show that $f(x)=3 x^{3}+2 x-1+\sin x$ has exactly one real zero. (Hint: let a, b be zeroes of f. The MVT will find c such that $f^{\prime}(c)=$?)

Solution: Suppose $f(a)=f(b)=0$. The function f is everywhere differentiable (defined by formula everywhere), so by the MVT there is c between a, b such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=0$. But we know that $f^{\prime}(x)$ is everywhere non-vanishing (see problem (1) above).
(8) (Final, 2015)
(a) Suppose $f, f^{\prime}, f^{\prime \prime}$ are all continuous. Suppose f has at least three zeroes. How many zeroes must $f^{\prime}, f^{\prime \prime}$ have?
Solution: Suppose $f(a)=f(b)=0$. Since f is everywhere differentiable, by the MVT there is x between a, b such that $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}=0$. Now if $a<b<c$ are zeroes of f we find a zero of f^{\prime} between (a, b) and between (b, c) (so f^{\prime} has at least two zeroes) and then $f^{\prime \prime}$ has a zero between the two zeroes of f^{\prime}, so $f^{\prime \prime}$ has at least one zero.
(b) [Show that $2 x^{2}-3+\sin x+\cos x=0$ has at least two solutions]
(c) Show that the equation has at most two solutions.

Solution: Suppose $f(x)=2 x^{2}-3+\sin x+\cos x$ had three zeroes. Then by part (a), $f^{\prime \prime}(x)$ would have a zero. But $f^{\prime \prime}(x)=4-\sin x-\cos x \geq 4-1-1=2>0$ is nowhere vanishing.
(9) (Final, 2012) Suppose $f(1)=3$ and $-3 \leq f^{\prime}(x) \leq 2$ for $x \in[1,4]$. What can you say about $f(4)$?

Solution: Since f is everywhere differentiable, by the MVT there is $c \in(1,4)$ such that

$$
\frac{f(4)-f(1)}{4-1}=f^{\prime}(c) .
$$

It follows that

$$
-3 \leq \frac{f(4)-f(1)}{3} \leq 2
$$

and hence

$$
-6 \leq f(1)+(-3) \cdot 3 \leq f(4) \leq f(1)+2 \cdot 3=9
$$

(10) Show that $|\sin a-\sin b| \leq|a-b|$ for all a, b.

Solution: The claim is automatic if $a=b$ so assume $a \neq b$. Since $f(x)=\sin x$ is everywhere differentiable, for any $a \neq b$ we may apply the MVT to find c between them such that $\frac{\sin a-\sin b}{a-b}=$ $f^{\prime}(c)=\cos c$. It follows that

$$
\frac{|\sin a-\sin b|}{|a-b|}=|\cos c| \leq 1
$$

and the claim follows.
(11) Let $x>0$. Show that $e^{x}>1+x$ and that $\log (1+x) \leq x$.

Solution: The function e^{x} is everywhere differentiable and its derivative is e^{c}. For $x>0$ we therefore have $0<c<x$ such that

$$
\frac{e^{x}-e^{0}}{x-0}=e^{c}>1
$$

(the latter since $c>0$). It follows that $e^{x}>x+e^{0}=x+1$.
Similarly, the function $\log (y)$ is differentiable on $[1, \infty)$ with derivative $\frac{1}{y}$. It follows that for $x>0$ we have d in the interval $1<d<1+x$ such that

$$
\frac{\log (1+x)-\log 1}{(1+x)-1}=\frac{1}{d}<1
$$

(the latter since $d>1$). Since $\log 1=0$ and $(1+x)-1=x$ it follows that

$$
\log (1+x) \leq x
$$

