Math 100 - WORKSHEET 16 MINIMA AND MAXIMA

1. Absolute minima and maxima by hand

Theorem. If f is continuous on $[a, b]$ it has an absolute maximum and minimum there.
(1) Find the absolute maximum and minimum values of $f(x)=|x|$ on the interval $[-3,5]$.
(2) Find the absolute maximum and minimum of $f(x)=\sqrt{x}$ on $[0,5]$.

2. Derivatives and local extrema

Theorem (Fermat). If, in addition, f is defined and differentiable near c (on both sides!) and has a local extremum at c then $f^{\prime}(c)=0$.

Procedure

- Call c a critical point if $f^{\prime}(c)=0$, a singular point if $f^{\prime}(c)$ does not exist.
- To find absolute maximum/minimum of a continuous function f defined on $[a, b]$:
- Evaluate $f(c)$ at all critical and singular point.
- Evaluate $f(a), f(b)$.
- Choose largest, smallest value.
(3) (Final, 2011) Let $f(x)=6 x^{1 / 5}+x^{6 / 5}$.
(a) Find the critical numbers and singularities of f.
(b) Find its absolute maximum and minimum on the internal $[-32,32]$.
(4) (Final, 2015) Find the critical points of $f(x)=e^{x^{3}-9 x^{2}+15 x-1}$
(5) (caution)
(a) Show that $f(x)=(x-1)^{4}+7$ attains its absolute minimum at $x=1$.
(b) Show that $f(x)=(x-1)^{3}+7$ has $f^{\prime}(1)=0$ but has no local minimum or maximum there.
(6) (Midterm, 2010) Find the maximum value of $x \sqrt{1-\frac{3}{4} x^{2}}$ on the interval $[0,1]$.
(7) (Final, 2007) Let $f(x)=x \sqrt{3-x}$.
(a) Find the domain of f.
(b) Determine the x-coordinates of any local maxima or minima of f.

