Math 100 - WORKSHEET 15
 TAYLOR REMAINDER ESTIMATES

1. Review: Taylor expansion

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

(1) Estimate $(4.1)^{3 / 2}$ using a linear and a quadratic approximation.
(2) The third-order expansion of $h(x)$ about $x=2$ is $3+\frac{1}{2}(x-2)+2(x-2)^{3}$. What are $h^{\prime}(2)$ and $h^{\prime \prime}(2)$?
(3) (Final, 2016) Find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.

2. Error estimate 1

Let $R_{1}(x)=f(x)-T_{1}(x)$ be the remainder. Then there is c between a and x such that

$$
R_{1}(x)=\frac{f^{(2)}(c)}{2!}(x-a)^{2}
$$

(4) Estimate the error in the linear approximations to $(4.1)^{3 / 2}$.
(5) (Final, 2012) Show $-\frac{5}{32} \leq \log \left(\frac{8}{9}\right) \leq-\frac{1}{9}$ using the linear approximation to $f(x)=\log \left(1-x^{2}\right)$.
3. Higher order error estimates

Let $R_{n}(x)=f(x)-T_{n}(x)$ be the remainder. Then there is c between a and x such that

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

(6) Estimate the magnitude of the error in the quadratic approximation to $(4.1)^{3 / 2}$.
(7) (Quiz, 2015) Consider a function f such that $f^{(4)}(x)=\frac{\cos \left(x^{2}\right)}{3-x}$. Show that, when approximating $f(0.5)$ using its third-degree MacLaurin polynomial, the absolute value of the error is less than $\frac{1}{500}$.
(8) (Final, 2012) Show that for all $-1 \leq x \leq 1$ we have

$$
0 \leq \cos (x)-\left(1-\frac{x^{2}}{2}\right) \leq \frac{1}{24}
$$

