Math 100 - SOLUTIONS TO WORKSHEET 15 TAYLOR REMAINDER ESTIMATES

1. Review: Taylor expansion

(1) Estimate $(4.1)^{3 / 2}$ using a linear and a quadratic approximation.

Solution: Let $f(x)=x^{3 / 2}$ so that $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$ and $f^{\prime \prime}(x)=\frac{3}{4} x^{-1 / 2}$. Then $f(4)=8$, $f^{\prime}(4)=\frac{3}{2} \cdot 2=3$ and $f^{\prime \prime}(4)=\frac{3}{8}$. The linear approximation is $T_{1}(x)=4+3(x-4)$, the quadratic approximation is $T_{2}(x)=4+3(x-4)+\frac{3}{16}(x-4)^{2}$ and in particular

$$
\begin{aligned}
T_{1}(4.1) & =4+3 \cdot 0.1=4.3 \\
T_{2}(4.1) & =4+3 \cdot 0.1+\frac{3}{16} \cdot(0.1)^{2}=4.3+\frac{3 \cdot 625}{10^{6}} \\
& =4.301875
\end{aligned}
$$

(2) The third-order expansion of $h(x)$ about $x=2$ is $3+\frac{1}{2}(x-2)+2(x-2)^{3}$. What are $h^{\prime}(2)$ and $h^{\prime \prime}(2)$?

Solution: $\quad h^{\prime}(2)=\frac{1}{2}$ and $\frac{h^{\prime \prime}(2)}{2!}=0$ (no quadratic term) so $h^{\prime \prime}(2)=0$.
(3) (Final, 2016) Find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.

Solution: Let $f(x)=\sin x$. Then $f^{\prime}(x)=\cos x, f^{(2)}(x)=-\sin x$ and $f^{(3)}(x)=-\cos x$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{(3)}(0)=-1$ and the third-order expansion of $\sin x$ is $0+\frac{1}{1!} x+\frac{0}{2!} x^{2}+\frac{(-1)}{3!} x^{3}=x-\frac{1}{6} x^{3}$. We then have, correct to third order, that

$$
(x+1) \sin x \approx(x+1)\left(x-\frac{1}{6} x^{3}\right)=x+x^{2}-\frac{1}{6} x^{3}-\frac{1}{6} x^{4} \approx x+x^{2}-\frac{1}{6} x^{3}
$$

Solution: Let $g(x)=(x+1) \sin x$. Then $f^{\prime}(x)=\sin x+(x+1) \cos x, f^{\prime \prime}(x)=2 \cos x-(x+1) \sin x$, $f^{(3)}(x)=-3 \sin x-(x+1) \cos x$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=2, f^{(3)}(0)=-1$ and

$$
T_{3}(x)=0+\frac{1}{1!} x+\frac{2}{2!} x^{2}-\frac{1}{6!} x^{3}=x+x^{2}-\frac{1}{6} x^{3}
$$

2. Error estimate 1

Let $R_{1}(x)=f(x)-T_{1}(x)$ be the remainder. Then there is c between a and x such that

$$
R_{1}(x)=\frac{f^{(2)}(c)}{2!}(x-a)^{2}
$$

(4) Estimate the error in the linear approximations to $(4.1)^{3 / 2}$.

Solution: By the Lagrange remainder formula

$$
R_{1}(4.1)=f(4.1)-T_{1}(4)=\frac{1}{2!} \cdot \frac{3}{4} c^{-1 / 2}(0.1)^{2}
$$

for some $4 \leq c \leq 4.1$. The error is therefore positive $\left(T_{1}(4.1)\right.$ is an overestimate $)$ and its magnitude is at most $\frac{3}{800} \cdot \frac{1}{4^{1 / 2}}=\frac{3}{1600}$.
(5) (Final, 2012) Show $-\frac{5}{32} \leq \log \left(\frac{8}{9}\right) \leq-\frac{1}{9}$ using the linear approximation to $f(x)=\log \left(1-x^{2}\right)$.

Solution: We have $f^{\prime}(x)=-\frac{2 x}{1-x^{2}}$ and $f^{\prime \prime}(x)=-\frac{2\left(1-x^{2}\right)-2 x(-2 x)}{\left(1-x^{2}\right)^{2}}=-\frac{2+2 x^{2}}{\left(1-x^{2}\right)^{2}}=-2 \frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}$. Since $f(0)=0$ and $f^{\prime}(0)=0$ the linear approximation to $\log \left(\frac{8}{9}\right)=f\left(\frac{1}{3}\right)$ is $T_{1}\left(\frac{1}{3}\right)=0+0 \cdot \frac{1}{3}=0$. The error satisfies

$$
R_{1}\left(\frac{1}{3}\right)=\frac{1}{2!} \cdot(-2) \cdot \frac{1+c^{2}}{\left(1-c^{2}\right)^{2}}\left(\frac{1}{3}\right)^{2}
$$

for some $0 \leq c \leq \frac{1}{3}$. Now the expression $\frac{1+c^{2}}{\left(1-c^{2}\right)^{2}}$ is increasing for $0 \leq c \leq \frac{1}{3}$ (clear for the numerator, and for the denominator note that $1-c^{2}$ is decreasing). It follows that $1 \leq \frac{1+c^{2}}{\left(1-c^{2}\right)^{2}} \leq \frac{1+\frac{1}{9}}{(8 / 9)^{2}}=\frac{90}{8^{2}}=\frac{45}{32}$. We therefore have

$$
-1 \cdot \frac{1}{9}=-\frac{1}{9} \geq R_{1}\left(\frac{1}{3}\right) \geq-\frac{45}{32} \cdot \frac{1}{9}=-\frac{5}{32}
$$

3. Higher order error estimates

Let $R_{n}(x)=f(x)-T_{n}(x)$ be the remainder. Then there is c between a and x such that

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

(6) Estimate the magnitude of the error in the quadratic approximation to $(4.1)^{3 / 2}$.

Solution: We have $f^{(3)}(x)=-\frac{3}{16} x^{-3 / 2}$. Thus

$$
R_{2}(x)=-\frac{1}{3!} \cdot \frac{3}{16} c^{-3 / 2}(0.1)^{3}=-\frac{1}{3200} c^{-3 / 2}
$$

for some $4<c<4.1$. Now the magnitude of this function decreases with c, so

$$
\left|R_{2}(x)\right| \leq \frac{1}{32000} \cdot 4^{-3 / 2}=\frac{8}{32000}=\frac{1}{4000}=0.00025
$$

(7) (Quiz, 2015) Consider a function f such that $f^{(4)}(x)=\frac{\cos \left(x^{2}\right)}{3-x}$. Show that, when approximating $f(0.5)$ using its third-degree MacLaurin polynomial, the absolute value of the error is less than $\frac{1}{500}$.

Solution: The Lagrange remainder formula shows that

$$
R_{3}(0.5)=\frac{1}{4!} \cdot \frac{\cos \left(c^{2}\right)}{3-c} \cdot(0.5)^{4}
$$

for some $0<c<0.5$. Then $\left|\cos \left(c^{2}\right)\right| \leq 1$ and $\left|\frac{1}{3-c}\right| \leq \frac{1}{3-0.5}=\frac{2}{5}$. We therefore have

$$
\left|R_{3}\left(\frac{1}{2}\right)\right|=\frac{1}{24} \cdot \frac{2}{5} \cdot \frac{1}{16}=\frac{1}{120 \cdot 8}=\frac{1}{960}<\frac{1}{500} .
$$

(8) (Final, 2012) Show that for all $-1 \leq x \leq 1$ we have

$$
0 \leq \cos (x)-\left(1-\frac{x^{2}}{2}\right) \leq \frac{1}{24}
$$

Solution: Let $f(x)=\cos x$. Then $f^{\prime}(x)=-\sin x, f^{(2)}(x)=-\cos x, f^{(3)}(x)=\sin x, f^{(4)}(x)=$ $\cos x$. Thus $f(0)=1, f^{\prime}(0)=0, f^{(2)}(0)=-1$ and $f^{(3)}(0)=0$. The third-order MacLaurin polynomia of f is therefore

$$
T_{3}(x)=1+0 x-\frac{1}{2!} x^{2}+0 x^{3}=1-\frac{1}{2} x^{2}
$$

We therefore have $\cos (x)-\left(1-\frac{x^{2}}{2}\right)=f(x)-T_{3}(x)=R_{3}(x)$. By the Lagrange form there is c between 0 and x (in particular, $-1<c<1$) so that

$$
R_{3}(x)=\frac{1}{4!} f^{(4)}(c) \cdot x^{4}=\frac{\cos c}{24} \cdot x^{4}
$$

Now x^{4} is always positive and $\cos c$ is positive on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Since $\pi>3, \frac{\pi}{2}>1.5>1$ and $\cos c$ is positive, so $R_{3}(x)>0$ for all $x \in[-1,1]$. On the other hand $\cos c \leq 1$ for all c and $x^{4} \leq 1$ if $|x| \leq 1$. We therefore have $R_{3}(x) \leq \frac{1}{24} \cdot 1=\frac{1}{24}$.

