Math 100 - WORKSHEET 14 TAYLOR EXPANSION

1. The Linear Approximation

Fact: For x near a we have $f(x) \approx L(x)$ where $L(x)=f(a)+f^{\prime}(a)(x-a)$
(1) Use a linear approximation to estimate
(a) $\sqrt{1.2}$
(b) (Final, 2015) $\sqrt{8}$
(c) $\left(\right.$ Final, 2016) $(26)^{1 / 3}$
(d) $\log 1.07$

2. TAylor approximation

(2) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.
(3) Do the same with $f(x)=\ln x$ about $x=1$.

Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

(4) Find the 4 th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x=0$)
(5) Find the nth order expansion of $\cos x$.
(6) (Final, 2015) Let $T_{3}(x)=24+6(x-3)+12(x-3)^{2}+4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is $f^{\prime \prime}(3)$?

3. New from old

(7) (Final, 2016) Find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.
(7) Find the 3 rd order Taylor expansion of $\sqrt{x}+3 x$ about $x=4$.
(8) Find the 8 th order expansion of $f(x)=e^{x^{2}}+\cos (2 x)$. What is $f^{(6)}(0)$?
(9) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

