Math 100 - SOLUTIONS TO WORKSHEET 14 TAYLOR EXPANSION

1. The Linear Approximation

(1) Use a linear approximation to estimate
(a) $\sqrt{1.2}$

Solution: Let $f(x)=\sqrt{x}$ so that $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. Then $f(1)=1$ and $f^{\prime}(1)=\frac{1}{2}$ so $f(1.2) \approx$ $f(1)+f^{\prime}(1) \cdot 0.2=1+\frac{1}{2} \cdot 0.2=1.1$. Better: $f(1.21)=1.1$ and $f^{\prime}(1.21)=\frac{1}{2.2}$ so $f(1.2)=$ $f(1.21-0.01) \approx 1.1-0.01 \cdot \frac{1}{2.2} \approx 1.09545$.
(b) $($ Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9)+f^{\prime}(9) \cdot(-1)=3-\frac{1}{6}=2 \frac{5}{6}$.
(c) (Final, 2016) $(26)^{1 / 3}$

Solution: Let $f(x)=x^{1 / 3}$ so that $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Then $f(27)=3$ and $f^{\prime}(27)=\frac{1}{3 \cdot 27^{2 / 3}}=\frac{1}{27}$ so

$$
f(26)=f(27-1) \approx f(27)+(-1) \cdot f^{\prime}(27)=3-\frac{1}{27}=2 \frac{26}{27}
$$

(d) $\log 1.07$

Solution: Let $f(x)=\log x$ so that $f^{\prime}(x)=\frac{1}{x}$. Then $f(1)=0$ and $f^{\prime}(1)=1$ so $f^{\prime}(1.1) \approx 0.07$.

2. TAYLOR APPROXIMATION

(2) Let $f(x)=e^{x}$
(a) Find $f(0), f^{\prime}(0), f^{(2)}(0), \cdots$
(b) Find a polynomial $T_{0}(x)$ such that $T_{0}(0)=f(0)$.
(c) Find a polynomial $T_{1}(x)$ such that $T_{1}(0)=f(0)$ and $T_{1}^{\prime}(0)=f^{\prime}(0)$.
(d) Find a polynomial $T_{2}(x)$ such that $T_{2}(0)=f(0), T_{2}^{\prime}(0)=f^{\prime}(0)$ and $T_{2}^{(2)}(0)=f^{(2)}(0)$.
(e) Find a polynomial $T_{3}(x)$ such that $T_{3}^{(k)}(0)=f^{(k)}(0)$ for $0 \leq k \leq 3$.

Solution: $\quad f(x)=f^{\prime}(x)=f^{(2)}(x)=\cdots=e^{x}$ so $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=1$. Now $T_{0}(x)=1$ works, as does $T_{1}(x)=1+x$. If $T_{2}(x)=1+x+c x^{2}$ then $T_{2}^{\prime \prime}(x)=2 c=1$ means $c=\frac{1}{2}$ and $T_{2}(x)=1+x+\frac{1}{2} x^{2}$. Finally, $T_{3}(x)=1+x+\frac{1}{2} x^{2}+d x^{3}$ works if $6 d=1$ so if $d=\frac{1}{6}$.
(3) Do the same with $f(x)=\ln x$ about $x=1$.

Solution: $\quad f^{\prime}(x)=\frac{1}{x}, f^{\prime \prime}(x)=-\frac{1}{x^{2}}, f^{\prime \prime \prime}(x)=\frac{2}{x^{3}}$ so $f(1)=0, f^{\prime}(1)=1, f^{\prime \prime}(1)=-1, f^{\prime \prime \prime}(1)=2$. Try $T_{3}(x)=a+b x+c x^{2}+d x^{3}$ (can truncate later). Need $a=0$ to make $T_{3}(x)=0$. Diff we get $T_{3}^{\prime}(x)=b+2 c x+3 d x^{2}$, setting $x=0$ gives $b=1$. Diff again gives $T_{3}^{\prime \prime}(x)=2 c+6 d x$ so $2 c=-1$ and $c=-\frac{1}{2}$. Diff again give $T_{3}^{\prime \prime \prime}(x)=6 d=2$ so $d=\frac{1}{3}$ and $T_{3}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}$. Truncate this to get T_{0}, T_{1}, T_{2}.
Let $c_{k}=\frac{f^{(k)}(a)}{k!}$. The nth order Taylor expansion of $f(x)$ about $x=a$ is the polynomial

$$
T_{n}(x)=c_{0}+c_{1}(x-a)+\cdots+c_{n}(x-a)^{n}
$$

(4) Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x=0$)

Solution: $\quad f^{\prime}(x)=\frac{1}{(1-x)^{2}}, f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}, f^{(3)}(x)=\frac{6}{(1-x)^{4}}, f^{(4)}(x)=\frac{24}{(1-x)^{5}} f^{(k)}(0)=k!$ and the Taylor expansion is $1+x+x^{2}+x^{3}+x^{4}$.
(5) Find the nth order expansion of $\cos x$.

Solution: $\quad(\cos x)^{\prime}=-\sin x,(\cos x)^{(2)}=-\cos x,(\cos x)^{(3)}=\sin x,(\cos x)^{(4)}(x)=\cos x$ and the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are $1,0,-1,0,1,0,-1,0, \ldots$ so the Taylor expansion is

$$
\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots
$$

(6) (Final, 2015) Let $T_{3}(x)=24+6(x-3)+12(x-3)^{2}+4(x-3)^{3}$ be the third-degree Taylor polynomial of some function f, expanded about $a=3$. What is $f^{\prime \prime}(3)$?

Solution: We have $c_{2}=\frac{f^{(2)}}{2!}=12$ so $f^{(2)}=24$.

3. New From old

(7) (Final, 2016) Find the 3rd order Taylor expansion of $(x+1) \sin x$ about $x=0$.

Solution: Let $f(x)=\sin x$. Then $f^{\prime}(x)=\cos x, f^{(2)}(x)=-\sin x$ and $f^{(3)}(x)=-\cos x$. Thus $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{(3)}(0)=-1$ and the third-order expansion of $\sin x$ is $0+\frac{1}{1!} x+\frac{0}{2!} x^{2}+\frac{(-1)}{3!} x^{3}=x-\frac{1}{6} x^{3}$. We then have, correct to third order, that

$$
(x+1) \sin x \approx(x+1)\left(x-\frac{1}{6} x^{3}\right)=x+x^{2}-\frac{1}{6} x^{3}-\frac{1}{6} x^{4} \approx x+x^{2}-\frac{1}{6} x^{3} .
$$

(7) Find the 3rd order Taylor expansion of $\sqrt{x}+3 x$ about $x=4$.

Solution: Let $f(x)=\sqrt{x}$. Then $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, f^{(2)}(x)=-\frac{1}{4 x^{3 / 2}}$ and $f^{(3)}(x)=\frac{3}{8} x^{-5 / 2}$. Thus $f(4)=2, f^{\prime}(4)=\frac{1}{4}, f^{(2)}(4)=-\frac{1}{32}, f^{(3)}(4)=\frac{3}{256}$ and the third-order expansions are

$$
\begin{aligned}
\sqrt{x} & \approx 2+\frac{1}{4}(x-4)-\frac{1}{32 \cdot 2!}(x-4)^{3}+\frac{3}{256 \cdot 3!}(x-4)^{3} \\
3 x & \approx 12+3(x-4)
\end{aligned}
$$

so that

$$
\sqrt{x}+3 x \approx 14+3 \frac{1}{4} \cdot(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3}
$$

(8) Find the 8 th order expansion of $f(x)=e^{x^{2}}+\cos (2 x)$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^{u}=1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+\frac{u^{4}}{24}$ so $e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}$. We also know that $\cos u=1-\frac{u^{2}}{2}+\frac{u^{4}}{24}-\frac{u^{6}}{720}+\frac{u^{8}}{40320}$ so $\cos (2 x)=1-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\frac{2}{315} x^{8}$ so

$$
\begin{aligned}
e^{x^{2}}+\cos (2 x) & \approx\left(1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}\right)+\left(1-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\frac{2}{315} x^{8}\right) \\
& =2-x^{2}+\frac{7}{6} x^{4}+\frac{7}{90} x^{6}+\frac{121}{2520} x^{8}
\end{aligned}
$$

In particular, $\frac{f^{(6)}(0)}{6!}=\frac{7}{90}$ so $f^{(6)}(0)=6!\cdot \frac{7}{90}=\frac{720 \cdot 7}{90}=56$.
(9) Show that $\log \frac{1+x}{1-x} \approx 2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

Solution: Let $f(x)=\log (1+x)$. Then $f^{\prime}(x)=\frac{1}{1+x}, f^{(2)}(x)=-\frac{1}{(1+x)^{2}}, f^{(3)}(x)=\frac{1 \cdot 2}{(1+x)^{3}}$, $f^{(4)}(x)=-\frac{1 \cdot 2 \cdot 3}{(1+x)^{4}}$ and so on, so $f^{(k)}(x)=(-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^{k}}$. We thus have that $f(0)=0$ and for $k \geq 1$ that $f^{(k)}(0)=(-1)^{k-1}(k-1)!$. Then $\frac{f^{(k)}(0)}{k!}=\frac{(-1)^{k-1}}{k}$ so

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

Plugging $-x$ we get:

$$
\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots
$$

so

$$
\log \frac{1+x}{1-x}=\log (1+x)-\log (1-x)=2 x+2 \frac{x^{3}}{3}+2 \frac{x^{5}}{5}+\cdots
$$

In particular

$$
\log 3=\log \frac{1+\frac{1}{2}}{1-\frac{1}{2}}=2\left(\frac{1}{2}+\frac{1}{24}+\frac{1}{160}+\cdots\right)=1+\frac{1}{12}+\frac{1}{80}+\cdots \approx 1.096
$$

