Math 100 - SOLUTIONS TO WORKSHEET 12 EXPONENTIAL GROWTH AND DECAY

1. Exponentials

(1) Supposf $母^{1}$ that a pair of invasive opossums arrives in BC in 1935. Unchecked, opossums can triple their population annually.
(a) At what time will there be 1000 opossums in BC? 10,000 opossums?

Solution: After t years there are $2 \cdot 3^{t}$ opossums, so there will be 1000 opossums after $\frac{\log 500}{\log 3} \approx 5.7$ years and 10,000 opossums after $\frac{\log 5000}{\log 3} \approx 7.8$ years.
(b) Write a differential equation expressing the growth of the opossum population with time.

Solution: Since $\frac{\mathrm{d}}{\mathrm{d} t} 3^{t}=\log 3 \cdot 3^{t}$ the differential equation is $\frac{\mathrm{d} N}{\mathrm{~d} t}=\log 3 \cdot N$.
(2) A radioactive sample decays according to the law

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=k m
$$

(a) Suppose that one-quarter of the sample remains after 10 hours. What is the half-life?
(b) A 100-gram sample is left unattended for three days. How much of it remains?

Solution: If two halvings happened in 10 hours, the half-life is 5 hours. Accordingly after three days we will have $\frac{72}{5}$ half-lives, so the remaining mass will be

$$
100 \cdot 2^{-\frac{72}{5}}=100 \cdot \exp \left(-\frac{72}{5} \log 2\right) \approx 0.005 \mathrm{~g}
$$

(3) (Final, 2015) A colony of bacteria doubles every 4 hours. If the colony has 2000 cells after 6 hours, how many were present initially? Simplify your answer.

Solution: After 6 hours we've had 1.5 doublings, so the original size is $\frac{2000}{2^{1.5}}=1000 \frac{\sqrt{2}}{2} \approx 707$.

2. Newton's Law of Cooling

Fact. When a body of temperature T_{0} is placed in an environment of temperature $T_{\text {env }}$, the rate of change of the temperature $T(t)$ is negatively proportional to the temperature difference $T-T_{\text {env }}$. In other words, there is a (negative) constant k such that

$$
T^{\prime}=k\left(T-T_{e n v}\right)
$$

- key idea: change variables to the temperature difference. Let $y=T-T_{\text {env }}$. Then

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} T}{\mathrm{~d} t}-0=k y
$$

so there is C for which

$$
y(t)=C e^{k t}
$$

Solving for T we get:

$$
T(t)=T_{\mathrm{env}}+C e^{k t}
$$

Setting $t=0$ we find $T_{\text {env }}+C=T_{0}$ so $C=T_{0}-T_{\text {env }}$ and

$$
T(t)=T_{\mathrm{env}}+\left(T_{0}-T_{\mathrm{env}}\right) e^{k t}
$$

Corollary. $\lim _{t \rightarrow \infty} y(t)=0$ so $\lim _{t \rightarrow \infty} T(y)=T_{\text {env }}$.
(1) (Final, 2010) When an apple is taken from a refrigerator, its temperature is $3^{\circ} \mathrm{C}$. After 30 minutes in a $19^{\circ} \mathrm{C}$ room its temperature is $11^{\circ} \mathrm{C}$.

[^0](a) Find the temperature of the apple 90 minutes after it is taken from the refrigerator, expressed as an integer number of degrees Celsius.
Solution: Let $T(t)$ be the temperature of the apple t minutes after it was taken from the refrigerator, and let $y(t)=T(t)-19$ be the temperature difference. Newton's law of cooling provides that $y(t)$ decays exponentially at constant rate. We are given that $y(0)=-16^{\circ} C$ and that $y(30)=-8^{\circ} \mathrm{C}$ so the temperature difference was halved after 30 minutes. By 90 minutes there would be two further halvings, so $y(90)=-2^{\circ} C$ and $T(90)=-2+19=17^{\circ} C$.
(b) Determine the time when the temperature of the apple is $16^{\circ} \mathrm{C}$.

Solution: We are asked when the temperature difference will be $-3^{\circ} \mathrm{C}$. Since the temperature difference satisfies the law $y(t)=-16^{\circ} C \cdot 2^{-t / 30}$ we need to find t so that

$$
-3=-16 \cdot 2^{-t / 30}
$$

that is

$$
2^{t / 30}=\frac{16}{3} .
$$

Taking logarithms of both sides we have

$$
\frac{t}{30} \log 2=\log 16-\log 3
$$

so that the apple reaches $16^{\circ} \mathrm{C}$ at time

$$
t=30 \cdot \frac{\log 16-\log 2}{\log 2} \text { minutes. }
$$

(c) Write the differential equation satisfied by the temperature $T(t)$ of the apple.

Solution: We are asked when the temperature difference will be $-3^{\circ} \mathrm{C}$. Since the temperature difference satisfies the law $y(t)=-16^{\circ} C \cdot 2^{-t / 30}$ we need to find t so that

$$
-3=-16 \cdot 2^{-t / 30}
$$

that is

$$
2^{t / 30}=\frac{16}{3} .
$$

Taking logarithms of both sides we have

$$
\frac{t}{30} \log 2=\log 16-\log 3
$$

so that the apple reaches $16^{\circ} \mathrm{C}$ at time

$$
t=30 \cdot \frac{\log 16-\log 2}{\log 2} \text { minutes. }
$$

The temperature of the apple at time T is $T(t)=19^{\circ} \mathrm{C}-16^{\circ} \mathrm{C} \cdot 2^{-t / 30}=T=19^{\circ} \mathrm{C}-$ $16^{\circ} C \cdot e^{-\frac{\log 2}{30} t}$. We therefore have

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-\frac{\log 2}{30}(T-19)
$$

(2) (Final, 2013) A bottle of soda pop at room temperature $\left(70^{\circ} \mathrm{F}\right)$ is placed in the refrigerator where the temperature is $40^{\circ} \mathrm{F}$. After half han hour the bottle has cooled to $60^{\circ} \mathrm{F}$. When will it reach $50^{\circ} \mathrm{F}$?

Solution: Let $T(t)$ be the temperature of the soda t minutes after it was put in the fridge, and let $y(t)=T(t)-40^{\circ} \mathrm{F}$ be the temperature difference. Then we are given that $y(0)=30^{\circ} \mathrm{F}$ and that $y(30)=20^{\circ} F$. Newton's law of cooling provides that $y(t)$ decays exponentially at constant rate, so we conclude that $y(t)=30^{\circ} F \cdot\left(\frac{2}{3}\right)^{t / 30}$. We are asked for the time when $T(t)=50^{\circ} \mathrm{F}$, that is when $y(t)=10^{\circ} F$. That time therefore satisfies:

$$
10=30 \cdot\left(\frac{2}{3}\right)^{t / 30}
$$

that is

$$
3=\left(\frac{3}{2}\right)^{t / 30}
$$

Taking logarithms we find
so

$$
\log 3=\frac{t}{30} \log \frac{3}{2}
$$

$$
t=30 \frac{\log 3}{\log 3-\log 2} \text { minutes. }
$$

[^0]: Date: $15 / 10 / 2019$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.
 ${ }^{1}$ See http://linnet.geog.ubc.ca/efauna/Atlas/Atlas.aspx?sciname=Didelphis\%20virginiana

