Math 100 – SOLUTIONS TO WORKSHEET 12 EXPONENTIAL GROWTH AND DECAY

1. EXPONENTIALS

- (1) Suppose¹ that a pair of invasive opossums arrives in BC in 1935. Unchecked, opossums can triple their population annually.
 - (a) At what time will there be 1000 opossums in BC? 10,000 opossums? Solution: After t years there are 2 ⋅ 3^t opossums, so there will be 1000 opossums after ^{log 500}/_{log 3} ≈ 5.7 years and 10,000 opossums after ^{log 5000}/_{log 3} ≈ 7.8 years.
 (b) Write a differential equation expressing the growth of the opossum population with time.
 - (b) Write a differential equation expressing the growth of the opossum population with time. **Solution:** Since $\frac{d}{dt}3^t = \log 3 \cdot 3^t$ the differential equation is $\frac{dN}{dt} = \log 3 \cdot N$.
- $(2)\,$ A radioactive sample decays according to the law

$$\frac{\mathrm{d}m}{\mathrm{d}t} = km \,.$$

- (a) Suppose that one-quarter of the sample remains after 10 hours. What is the half-life?
- (b) A 100-gram sample is left unattended for three days. How much of it remains? Solution: If two halvings happened in 10 hours, the half-life is 5 hours. Accordingly after three days we will have $\frac{72}{5}$ half-lives, so the remaining mass will be

$$100 \cdot 2^{-\frac{72}{5}} = 100 \cdot \exp\left(-\frac{72}{5}\log 2\right) \approx 0.005$$
g.

(3) (Final, 2015) A colony of bacteria doubles every 4 hours. If the colony has 2000 cells after 6 hours, how many were present initially? Simplify your answer.

Solution: After 6 hours we've had 1.5 doublings, so the original size is $\frac{2000}{2^{1.5}} = 1000 \frac{\sqrt{2}}{2} \approx 707$.

2. Newton's Law of Cooling

Fact. When a body of temperature T_0 is placed in an environment of temperature T_{env} , the rate of change of the temperature T(t) is negatively proportional to the temperature difference $T - T_{env}$. In other words, there is a (negative) constant k such that

$$T' = k(T - T_{env}).$$

• key idea: change variables to the temperature difference. Let $y = T - T_{env}$. Then

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}T}{\mathrm{d}t} - 0 = ky$$

so there is C for which

$$y(t) = Ce^{kt}$$

Solving for T we get:

$$T(t) = T_{\rm env} + Ce^{kt}$$

Setting t = 0 we find $T_{env} + C = T_0$ so $C = T_0 - T_{env}$ and

$$T(t) = T_{\rm env} + (T_0 - T_{\rm env})e^{kt}$$
.

Corollary. $\lim_{t\to\infty} y(t) = 0$ so $\lim_{t\to\infty} T(y) = T_{env}$.

(1) (Final, 2010) When an apple is taken from a refrigerator, its temperature is $3^{\circ}C$. After 30 minutes in a $19^{\circ}C$ room its temperature is $11^{\circ}C$.

Date: 15/10/2019, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81. ¹See http://linnet.geog.ubc.ca/efauna/Atlas/Atlas.aspx?sciname=Didelphis%20virginiana

(a) Find the temperature of the apple 90 minutes after it is taken from the refrigerator, expressed as an integer number of degrees Celsius.

Solution: Let T(t) be the temperature of the apple t minutes after it was taken from the refrigerator, and let y(t) = T(t) - 19 be the temperature difference. Newton's law of cooling provides that y(t) decays exponentially at constant rate. We are given that $y(0) = -16^{\circ}C$ and that $y(30) = -8^{\circ}C$ so the temperature difference was halved after 30 minutes. By 90 minutes there would be two further halvings, so $y(90) = -2^{\circ}C$ and $T(90) = -2 + 19 = 17^{\circ}C$.

(b) Determine the time when the temperature of the apple is $16^{\circ}C$. Solution: We are asked when the temperature difference will be $-3^{\circ}C$. Since the temperature difference satisfies the law $y(t) = -16^{\circ}C \cdot 2^{-t/30}$ we need to find t so that

$$-3 = -16 \cdot 2^{-t/30}$$

that is

$$2^{t/30} = \frac{16}{3} \,.$$

Taking logarithms of both sides we have

$$\frac{t}{30}\log 2 = \log 16 - \log 3$$

so that the apple reaches $16^{\circ}C$ at time

$$t = 30 \cdot \frac{\log 16 - \log 2}{\log 2}$$
 minutes.

(c) Write the differential equation satisfied by the temperature T(t) of the apple. Solution: We are asked when the temperature difference will be $-3^{\circ}C$. Since the temperature difference satisfies the law $y(t) = -16^{\circ}C \cdot 2^{-t/30}$ we need to find t so that

$$-3 = -16 \cdot 2^{-t/30}$$

that is

$$2^{t/30} = \frac{16}{3}$$
.

Taking logarithms of both sides we have

$$\frac{t}{30}\log 2 = \log 16 - \log 3$$

so that the apple reaches $16^{\circ}C$ at time

$$t = 30 \cdot \frac{\log 16 - \log 2}{\log 2}$$
 minutes.

The temperature of the apple at time T is $T(t) = 19^{\circ}C - 16^{\circ}C \cdot 2^{-t/30} = T = 19^{\circ}C - 16^{\circ}C \cdot e^{-\frac{\log 2}{30}t}$. We therefore have

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{\log 2}{30} \left(T - 19\right) \,.$$

(2) (Final, 2013) A bottle of soda pop at room temperature $(70^{\circ}F)$ is placed in the refrigerator where the temperature is $40^{\circ}F$. After half han hour the bottle has cooled to $60^{\circ}F$. When will it reach $50^{\circ}F$?

Solution: Let T(t) be the temperature of the soda t minutes after it was put in the fridge, and let $y(t) = T(t) - 40^{\circ}F$ be the temperature difference. Then we are given that $y(0) = 30^{\circ}F$ and that $y(30) = 20^{\circ}F$. Newton's law of cooling provides that y(t) decays exponentially at constant rate, so we conclude that $y(t) = 30^{\circ}F \cdot \left(\frac{2}{3}\right)^{t/30}$. We are asked for the time when $T(t) = 50^{\circ}F$, that is when $y(t) = 10^{\circ}F$. That time therefore satisfies:

$$10 = 30 \cdot \left(\frac{2}{3}\right)^{t/30},$$

that is

 \mathbf{SO}

$$3 = \left(\frac{3}{2}\right)^{t/30} \,.$$

Taking logarithms we find

$$\log 3 = \frac{t}{30} \log \frac{3}{2}$$
$$t = 30 \frac{\log 3}{\log 3 - \log 2}$$
 minutes.

3