## Math 100 - SOLUTIONS TO WORKSHEET 11 SCIENTIFIC APPLICATIONS

## 1. Velocity and acceleration

(1) A particle's position is given by $f(t)=\frac{1}{\pi} \sin (\pi t)$.
(a) Find the velocity at time $t$, and specifically at $t=3$.

Solution: The velocity is the derivative of the position, so $v(t)=\frac{\mathrm{d} f}{\mathrm{~d} t}=\cos (\pi t)$. In particular $v(3)=\cos (3 \pi)=-1$.
(b) When is the particle moving to the right? to the left?

Solution: The particular is moving to the right when $\cos (\pi t)>0$ i.e. for times $t \in\left(-\frac{1}{2}, \frac{1}{2}\right)+$ $2 \mathbb{Z}$. It is moving to the left for $t \in\left(\frac{1}{2}, \frac{3}{2}\right)+2 \mathbb{Z}$.
(c) When is the particle accelerating? decelerating?

Solution: The acceleration is $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-\pi \sin (\pi t)$. This is positive when $t \in(1,2)+2 \mathbb{Z}$, negative when $t \in(0,1)+2 \mathbb{Z}$. But "accelerating" means the acceleration is in the same direction as the velocity! So the particle is accelerating for $t \in\left(\left(\frac{1}{2}, 1\right) \cup\left(\frac{3}{2}, 2\right)\right)+2 \mathbb{Z}$ and decelerating for $t \in\left(\left(0, \frac{1}{2}\right) \cup\left(1, \frac{3}{2}\right)\right)+2 \mathbb{Z}$.
(2) (Final, 2016) An object is thrown straight up into the air at time $t=0$ seconds. Its height in metres at time $t$ seconds is given by $h(t)=s_{0}+v_{0} t-5 t^{2}$. In the first second the object rises by 5 metres. For how many seconds does the object rise before beginning to fall?

Solution: We are given that $h(1)-h(0)=5$, in other words that $\left(s_{0}+v_{0}-5\right)-s_{0}=5$ so that $v_{0}=10$. Now the velocity of the object is

$$
v(t)=\frac{\mathrm{d} s}{\mathrm{~d} t}=v_{0}-10 t=10-10 t
$$

and this is positive as long as $t \leq 1 \mathrm{~s}$.
(3) A emergency breaking car can decelerate at $9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. How fast can a car drive so that it can come to a stop within 50 m ?

Solution: Suppose the car beings with velocity $v_{0}$. Its velocity at time $t$ is then $v(t)=v_{0}-g t$ so the stopping time is $t=\frac{v_{0}}{g}$. Reversing time, the distance travelled during the deceleration is the same as the distance travelled while accelerating at acceleration $g$ for time $t$. The breaking distance $L$ therefore has the form $\frac{1}{2} g t^{2}=\frac{v_{0}^{2}}{2 g}$. The maximum speed is then

$$
v_{0}=\sqrt{2 g L}=\sqrt{2 \cdot 9 \cdot 50}=30 \frac{\mathrm{~m}}{\mathrm{~s}}=180 \mathrm{~km} / \mathrm{h}
$$

## 2. Other applications

(1)
(a) Water is filling a cylindrical container of radius $r=10 \mathrm{~cm}$. Suppose that at time $t$ seconds the height of the water is $\left(t+t^{2}\right) \mathrm{cm}$. How fast is the volume growing?
Solution: At every time the water fills a cylinderical volume of radius $r$ height $h(t)=\left(t+t^{2}\right)$ hence volume

$$
V(t)=\pi r^{2} h(t)=100 \pi\left(t+t^{2}\right) \mathrm{cm}^{3}
$$

We therefore have

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=100 \pi(1+2 t) \frac{\mathrm{l}}{\mathrm{~s}}
$$

(b) A rocket is flying in space. The momentum of the rocket is given by the formula $p=m v$, where $m$ is the mass and $v$ is the velocity. At a time where the mass of the rocket is $m=1000 \mathrm{~kg}$ and its velocity is $v=500 \frac{\mathrm{~m}}{\mathrm{~s}}$ the rocket is accelerating at the rate $a=20 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ and losing mass at the rate $10 \frac{\mathrm{~kg}}{\mathrm{~s}}$. Find the rate of change of the momentum with time.
Solution: By the product rule we have

$$
\begin{aligned}
\frac{\mathrm{d} p}{\mathrm{~d} t} & =\frac{\mathrm{d} m}{\mathrm{~d} t} \cdot v+m \frac{\mathrm{~d} v}{\mathrm{~d} t} \\
& =(-10 \cdot 500+1000 \cdot 20) \frac{\mathrm{kgm}}{\mathrm{~s}^{2}}
\end{aligned}
$$

(2) A ball is falling from rest in air. Its height at time $t$ is given by

$$
h(t)=H_{0}-g t_{0}\left(t+t_{0} e^{-t / t_{0}}-t_{0}\right)
$$

where $H_{0}$ is the initial height and $t_{0}$ is a constant.
(a) Find the velocity of the ball. $v(t)=$

Solution: We have $v(t)=\frac{\mathrm{d} h}{\mathrm{~d} t}=-g t_{0}\left(1-e^{-t / t_{0}}\right)$.
(b) Find the acceleration. $a(t)=$

Solution: We have $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-g e^{-t / t_{0}}$.
(c) Find $\lim _{t \rightarrow \infty} v(t)$

Solution: The limit is $\lim _{t \rightarrow \infty} v(t)=-g t_{0} \lim _{t \rightarrow \infty}\left(1-e^{-t / t_{0}}\right)=-g t_{0}$.

