Math 100 - WORKSHEET 10 IMPLICIT DIFFERENTIATION; INVERSE TRIG FUNCTIONS

1. Implicit Differentiation

(1) Find the line tangent to the curve $y^{2}=4 x^{3}+2 x$ at the point $(2,6)$.
(2) (Final, 2015) Let $x y^{2}+x^{2} y=2$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(1,1)$.
(3) (Final 2012) Find the slope of the line tangent to the curve $y+x \cos y=\cos x$ at the point $(0,1)$.
(4) Find $y^{\prime \prime}$ (in terms of x, y) along the curve $x^{5}+y^{5}=10$ (ignore points where $y=0$).
(5) Find y^{\prime} if $(x+y) \sin (x y)=x^{2}$.

2. Inverse trig functions

(1) Evaluation
(a) (Final 2014) Evaluate $\arcsin \left(-\frac{1}{2}\right)$; Find $\arcsin \left(\sin \left(\frac{31 \pi}{11}\right)\right)$.
(b) (Final 2015) Simplify $\sin (\arctan 4)$
(c) Find $\tan (\arccos (0.4))$
(2) Differentiation
(a) Find $\frac{\mathrm{d}}{\mathrm{d} x}(\arcsin (2 x))$
(b) Find the line tangent to $y=\sqrt{1+(\arctan (x))^{2}}$ at the point where $x=1$.
(c) Find y^{\prime} if $y=\arcsin \left(e^{5 x}\right)$. What is the domain of the functions y, y^{\prime} ?

