Math 100 - SOLUTIONS TO WORKSHEET 9 LOGARITHMS AND LOGARITHMIC DIFFERENTIATION

1. Review of Logarithms

(1) $\log (e^{10}) =$

$$\log(2^{100}) =$$

Solution: $\log e^{10} = 10$ while $\log(2^{100}) = 100 \log 2$.

- (2) A variant on *Moore's Law* states that computing power doubles every 18 months. Suppose computers today can do N_0 operations per second.
 - (a) Write a formula predicting the future:
 - Computers t years from now will be able to do N(t) operations per second where

$$N(t) =$$

Solution: Since there is a doubling every 18 months, there will be t/1.5 doublings in t years and $N(t) = N_0 2^{t/1.5}$.

(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?

Solution: There will be two doublings in 3 years, so we will have the answer $3 + \frac{10}{2^2} = 3 + \frac{10}{4} =$ 5.5 years from now.

(c) At what time will computers be powerful enough to complete the task in 6 months?

Solution: The computers of t years from now will be able to complete the task in $10 \cdot 2^{-t/1.5}$ years, so we need to find t such that

$$10 \cdot 2^{-t/1.5} = \frac{1}{2} \,.$$

This is equivalent to $2^{t/1.5} = 20$, and taking logarithms gives

$$\frac{t}{1.5}\log 2 = \log 20$$

and hence

$$t = 1.5 \frac{\log 20}{\log 2} \,.$$

Solution: Can also write $2^{-t/1.5} = \frac{1}{20}$ and take logarithms to get $-\frac{t}{1.5} = \frac{\log \frac{1}{20}}{\log 2}$ so that $t = -1.5 \frac{\log \frac{1}{20}}{\log 2} = 1.5 \frac{\log 20}{\log 2}$ since $\log \frac{1}{20} = -\log 20$.

2. Differentiation

(1) Differentiate

(a) $\frac{\mathrm{d}(\log(ax))}{\mathrm{d}x} =$

$$\frac{\mathrm{d}}{\mathrm{d}t}\log\left(t^2+3t\right) =$$

Solution: By the chain rule, the derivatives are: $\frac{1}{ax} \cdot a = \frac{1}{x}$ and $\frac{1}{t^2+3t} \cdot (2t+3) = \frac{2t+t}{t^2+3t}$. We can also use the logarithm laws first: $\log(ax) = \log a + \log x$ so $\frac{1}{dx}(\log ax) = \frac{1}{dx}(\log ax) + \frac{1}{dx}(\log x) = \frac{1}{x}$ since $\log a$ is constant if a is. Similarly, $\log(t^2+3t) = \log t + \log(t+3)$ so its derivative is $\frac{1}{t} + \frac{1}{t+3}$.

(b)
$$\frac{d}{dx}x^2 \log(1+x^2) = \frac{d}{dr} \frac{1}{\log(2+\sin r)} =$$

Solution: Applying the product rule and then the chain rule we get: $\frac{d}{dx} (x^2 \log(1+x^2)) =$ $2x \log(1+x^2) + x^2 \frac{1}{1+x^2} \cdot 2x = 2x \log(1+x^2) + \frac{2x^3}{1+x^2}$. Using the quotient rule and the chain rule

$$\frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2 + \sin r)} = -\frac{1}{\log^2(2 + \sin r)} \cdot \frac{1}{2 + \sin r} \cdot \cos r = -\frac{\cos r}{(2 + \sin r)\log^2(2 + \sin r)}.$$

(2) (Logarithmic differentiation) differentiate $y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$. Solution: We have

$$y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$$

$$\log y = \log (x^2 + 1) + \log(\sin x) + \log \left(\frac{1}{\sqrt{x^2 + 3}}\right) + \log (e^{\cos x})$$
$$= \log (x^2 + 1) + \log (\sin x) - \frac{1}{2} \log (x^2 + 3) + \cos x.$$

Differentiating with respect to x gives:

$$\frac{y'}{y} = \frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{1}{2} \frac{2x}{x^2 + 3} - \sin x$$

and solving for y' finally gives

$$y' = \left(\frac{2x}{x^2 + 1} + \frac{\cos x}{\sin x} - \frac{x}{x^2 + 3} - \sin x\right) \cdot (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}.$$

(3) Differentiate using $f' = f \times (\log f)'$

(a)
$$x^x$$

If $y = x^x$ then $\log y = x \log x$. Differentiating with respect to x gives $\frac{1}{y}y' =$ $\log x + x \cdot \frac{1}{x} = \log x + 1$ so $y' = y(\log x + 1) = x^x(\log x + 1)$.

Solution: By the rule, $\frac{d}{dx}(x^x) = x^x \frac{d}{dx}(\log(x^x)) = x^x(\log x + 1)$. **Solution:** We have $x^x = (e^{\log x})^x = e^{x \log x}$. Applying the chain rule we now get $(x^x)' = (x^x)^x = (x^x)^$ $e^{x \log x} (\log x + 1) = x^x (\log x + 1).$

(b) $(\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}}{\mathrm{d}x} (\log x)^{\cos x} = (\log x)^{\cos x} \cdot \frac{\mathrm{d}}{\mathrm{d}x} (\cos x \log(\log x))$$

$$= -\sin x \log\log x (\log x)^{\cos x} + (\log x)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x}$$

$$= -\sin x \log\log x (\log x)^{\cos x} + \cos x (\log x)^{\cos x - 1} \frac{1}{x}.$$

(c) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x only. **Solution:** By the logarithmic differentiation rule we have

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y \frac{\mathrm{d}\log y}{\mathrm{d}x} = x^{\log x} \frac{\mathrm{d}}{\mathrm{d}x} (\log x \cdot \log x)$$
$$= x^x \left(2\log x \cdot \frac{1}{x} \right) = 2\log x \cdot x^{x-1}.$$