Math 100 - SOLUTIONS TO WORKSHEET 9 LOGARITHMS AND LOGARITHMIC DIFFERENTIATION

1. Review of Logarithms

(1) $\log \left(e^{10}\right)=$

$$
\log \left(2^{100}\right)=
$$

Solution: $\log e^{10}=10$ while $\log \left(2^{100}\right)=100 \log 2$.
(2) A variant on Moore's Law states that computing power doubles every 18 months. Suppose computers today can do N_{0} operations per second.
(a) Write a formula predicting the future:

- Computers t years from now will be able to do $N(t)$ operations per second where

$$
N(t)=
$$

Solution: Since there is a doubling every 18 months, there will be $t / 1.5$ doublings in t years and $N(t)=N_{0} 2^{t / 1.5}$.
(b) A computing task would take 10 years for today's computers. Suppose we wait 3 years and then start the computation. When will we have the answer?
Solution: There will be two doublings in 3 years, so we will have the answer $3+\frac{10}{2^{2}}=3+\frac{10}{4}=$ 5.5 years from now.
(c) At what time will computers be powerful enough to complete the task in 6 months?

Solution: The computers of t years from now will be able to complete the task in $10 \cdot 2^{-t / 1.5}$ years, so we need to find t such that

$$
10 \cdot 2^{-t / 1.5}=\frac{1}{2}
$$

This is equivalent to $2^{t / 1.5}=20$, and taking logarithms gives

$$
\frac{t}{1.5} \log 2=\log 20
$$

and hence

$$
t=1.5 \frac{\log 20}{\log 2} .
$$

Solution: Can also write $2^{-t / 1.5}=\frac{1}{20}$ and take logarithms to get $-\frac{t}{1.5}=\frac{\log \frac{1}{20}}{\log 2}$ so that $t=-1.5 \frac{\log \frac{1}{20}}{\log 2}=1.5 \frac{\log 20}{\log 2}$ since $\log \frac{1}{20}=-\log 20$.

2. Differentiation

$$
(\log x)^{\prime}=\frac{1}{x}
$$

(1) Differentiate
(a) $\frac{\mathrm{d}(\log (a x))}{\mathrm{d} x}=$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \log \left(t^{2}+3 t\right)=
$$

Solution: By the chain rule, the derivatives are: $\frac{1}{a x} \cdot a=\frac{1}{x}$ and $\frac{1}{t^{2}+3 t} \cdot(2 t+3)=\frac{2 t+t}{t^{2}+3 t}$. We can also use the \log arithm laws first: $\log (a x)=\log a+\log x$ so $\frac{\mathrm{d}}{\mathrm{d} x}(\log a x)=\frac{\mathrm{d}}{\mathrm{d} x}(\log a)+\frac{\mathrm{d}}{\mathrm{d} x}(\log x)=\frac{1}{x}$ since $\log a$ is constant if a is. Similarly, $\log \left(t^{2}+3 t\right)=\log t+\log (t+3)$ so its derivative is $\frac{1}{t}+\frac{1}{t+3}$.
(b) $\frac{\mathrm{d}}{\mathrm{d} x} x^{2} \log \left(1+x^{2}\right)=$

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=
$$

Solution: Applying the product rule and then the chain rule we get: $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{2} \log \left(1+x^{2}\right)\right)=$ $2 x \log \left(1+x^{2}\right)+x^{2} \frac{1}{1+x^{2}} \cdot 2 x=2 x \log \left(1+x^{2}\right)+\frac{2 x^{3}}{1+x^{2}}$. Using the quotient rule and the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} r} \frac{1}{\log (2+\sin r)}=-\frac{1}{\log ^{2}(2+\sin r)} \cdot \frac{1}{2+\sin r} \cdot \cos r=-\frac{\cos r}{(2+\sin r) \log ^{2}(2+\sin r)} .
$$

(2) (Logarithmic differentiation) differentiate $y=\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}$.

Solution: We have

$$
\begin{aligned}
\log y & =\log \left(x^{2}+1\right)+\log (\sin x)+\log \left(\frac{1}{\sqrt{x^{2}+3}}\right)+\log \left(e^{\cos x}\right) \\
& =\log \left(x^{2}+1\right)+\log (\sin x)-\frac{1}{2} \log \left(x^{2}+3\right)+\cos x
\end{aligned}
$$

Differentiating with respect to x gives:

$$
\frac{y^{\prime}}{y}=\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{1}{2} \frac{2 x}{x^{2}+3}-\sin x
$$

and solving for y^{\prime} finally gives

$$
y^{\prime}=\left(\frac{2 x}{x^{2}+1}+\frac{\cos x}{\sin x}-\frac{x}{x^{2}+3}-\sin x\right) \cdot\left(x^{2}+1\right) \cdot \sin x \cdot \frac{1}{\sqrt{x^{3}+3}} \cdot e^{\cos x}
$$

(3) Differentiate using $f^{\prime}=f \times(\log f)^{\prime}$
(a) x^{x}

Solution: If $y=x^{x}$ then $\log y=x \log x$. Differentiating with respect to x gives $\frac{1}{y} y^{\prime}=$ $\log x+x \cdot \frac{1}{x}=\log x+1$ so $y^{\prime}=y(\log x+1)=x^{x}(\log x+1)$.
Solution: By the rule, $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{x}\right)=x^{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log \left(x^{x}\right)\right)=x^{x}(\log x+1)$.
Solution: We have $x^{x}=\left(e^{\log x}\right)^{x}=e^{x \log x}$. Applying the chain rule we now get $\left(x^{x}\right)^{\prime}=$ $e^{x \log x}(\log x+1)=x^{x}(\log x+1)$.
(b) $(\log x)^{\cos x}$

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\log x)^{\cos x} & =(\log x)^{\cos x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}(\cos x \log (\log x)) \\
& =-\sin x \log \log x(\log x)^{\cos x}+(\log x)^{\cos x} \cos x \frac{1}{\log x} \frac{1}{x} \\
& =-\sin x \log \log x(\log x)^{\cos x}+\cos x(\log x)^{\cos x-1} \frac{1}{x}
\end{aligned}
$$

(c) (Final, 2014) Let $y=x^{\log x}$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.

Solution: By the logarithmic differentiation rule we have

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =y \frac{\mathrm{~d} \log y}{\mathrm{~d} x}=x^{\log x} \frac{\mathrm{~d}}{\mathrm{~d} x}(\log x \cdot \log x) \\
& =x^{x}\left(2 \log x \cdot \frac{1}{x}\right)=2 \log x \cdot x^{x-1}
\end{aligned}
$$

