Math 100 - WORKSHEET 8
 INVERSE FUNCTIONS

1. More on the chain rule
(1) Suppose f, g are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.

2. Inverse functions

To find the inverse for $y=f(x)$: (1) "solve for x ", get $x=g(y)(2)$ "exchange x, y " to get $g(x)$.
(1) Find the function inverse to $y=x^{7}+3$.
(2) Does $y=x^{2}$ have an inverse?
(3) Consider the function $y=\sqrt{x-1}$ on $x \geq 1$.
(a) Find the inverse function, in the form $x=g(y)$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and calculate their product.
3. The inverse function fule

To find the derivative of f^{-1} : (1) Convert $y=f^{-1}(x)$ to the form $x=f(y)(2)$ compute $\frac{d x}{d y}$ (3) In $\frac{d y}{d x}$ plug in $y=f^{-1}(x)$ to get expression in terms of x.
(1) Given that $\frac{\mathrm{d}}{\mathrm{d} y} y^{2}=2 y$, find $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}$.
(2) Find $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin x$.
(3) Find $\frac{\mathrm{d}}{\mathrm{d} x} \log x$.
(4) (Derivatives and logarithms)
(a) Differentiate $\log \sqrt[k]{t}$.
(b) (Final, 2012) Let $y=\log (\sin (\log x))$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

