Math 100 – WORKSHEET 8 INVERSE FUNCTIONS

1. More on the chain rule

(1) Suppose f, g are differentiable functions with $f(g(x)) = x^3$. Suppose that f'(g(4)) = 5. Find g'(4).

2. Inverse functions

To find the inverse for y = f(x): (1) "solve for x", get x = g(y) (2) "exchange x, y" to get g(x).

(1) Find the function inverse to $y = x^7 + 3$.

(2) Does $y = x^2$ have an inverse?

(3) Consider the function y = √x - 1 on x ≥ 1.
(a) Find the inverse function, in the form x = g(y).

(b) Find $\frac{dy}{dx}$, $\frac{dx}{dy}$ and calculate their product.

Date: 1/10/2019, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

To find the derivative of f^{-1} : (1) Convert $y = f^{-1}(x)$ to the form x = f(y) (2) compute $\frac{dx}{dy}$ (3) In $\frac{dy}{dx}$ plug in $y = f^{-1}(x)$ to get expression in terms of x.

(1) Given that $\frac{\mathrm{d}}{\mathrm{d}y}y^2 = 2y$, find $\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{x}$.

(2) Find $\frac{\mathrm{d}}{\mathrm{d}x} \arcsin x$.

(3) Find $\frac{\mathrm{d}}{\mathrm{d}x} \log x$.

(4) (Derivatives and logarithms) (a) Differentiate log $\sqrt[k]{t}$.

(b) (Final, 2012) Let $y = \log(\sin(\log x))$. Find $\frac{dy}{dx}$.