Math 100 – SOLUTIONS TO WORKSHEET 8 **INVERSE FUNCTIONS**

1. More on the chain rule

(1) Suppose f, g are differentiable functions with $f(g(x)) = x^3$. Suppose that f'(g(4)) = 5. Find g'(4). **Solution:** Applying the chain rule we have $f'(g(x)) \cdot g'(x) = 3x^2$. Plugging in x = 4 we get $5g'(4) = 3 \cdot 4^2$ and hence $g'(4) = \frac{48}{5}$.

2. Inverse functions

- (1) Find the function inverse to $y = x^7 + 3$. If $y = x^7 + 3$ then $x^7 = y - 3$ so $x = (y - 3)^{1/7}$, and the inverse function is Solution: $y = (x - 3)^{1/7}$.
- (2) Does $y = x^2$ have an inverse? **Solution:** Not on its full domain (not single-valued), yes on $[0, \infty)$.
- (3) Consider the function $y = \sqrt{x-1}$ on $x \ge 1$.
 - (a) Find the inverse function, in the form x = g(y). **Solution:** If $y = \sqrt{x-1}$ then $y^2 = x-1$ so $x = y^2 + 1$. (b) Find $\frac{dy}{dx}$, $\frac{dx}{dy}$ and calculate their product.

Solution: We have $\frac{dy}{dx} = \frac{1}{2\sqrt{x-1}}$ and $\frac{dx}{dy} = 2y$. Their product is $\frac{2y}{2\sqrt{x-1}} = \frac{y}{\sqrt{x-1}} = 1$ since $y = \sqrt{x-1}$ along the curves.

3. The inverse function fule

(1) Given that $\frac{\mathrm{d}}{\mathrm{d}y}y^2 = 2y$, find $\frac{\mathrm{d}}{\mathrm{d}x}\sqrt{x}$. **Solution:** If $y = \sqrt{x}$ then $x = y^2$ so $\frac{dx}{dy} = 2y = 2\sqrt{x}$ so $\frac{dy}{dx} = \frac{1}{2\sqrt{x}}$ so the derivative of \sqrt{x} is $\frac{1}{2\sqrt{x}}$.

- (2) Find $\frac{\mathrm{d}}{\mathrm{d}x} \arcsin x$. **Solution:** Suppose $\theta = \arcsin x$. Then $x = \sin \theta$ so $\frac{dx}{d\theta} = \cos \theta$ so $\frac{d\theta}{dx} = \frac{1}{\cos \theta}$ so $\frac{d \arcsin x}{dx} = \frac{1}{\cos \theta}$ $\frac{1}{\sqrt{1-\sin^2\theta}} = \frac{1}{\sqrt{1-x^2}}.$ (3) Find $\frac{\mathrm{d}}{\mathrm{d}x}\log x.$

Solution: If $y = \log x$ then $x = e^y$, so $\frac{\mathrm{d}x}{\mathrm{d}y} = e^y$ so $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{e^y} = \frac{1}{x}$. (4) (Derivatives and logarithms)

(a) Differentiate log $\sqrt[k]{t}$. **Solution:** $\log \sqrt[k]{t} = \log t^{1/k} = \frac{1}{k} \log t$ so the derivative is $\frac{1}{kt}$. We can also use the chain rule:

$$\frac{\mathrm{d}\log t^{1/k}}{\mathrm{d}t} = \frac{1}{t^{1/k}} \cdot \frac{1}{k} t^{\frac{1}{k}-1} = \frac{1}{kt} \,.$$

(b) (Final, 2012) Let
$$y = \log(\sin(\log x))$$
. Find $\frac{dy}{dx}$.
Solution: By the chain rule this is $\frac{1}{\sin(\log x)} \cdot \cos(\log x) \cdot \frac{1}{x} = \frac{\cos(\log x)}{x \sin(\log x)}$

Date: 1/10/2019, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.