Math 100 - SOLUTIONS TO WORKSHEET 8 INVERSE FUNCTIONS

1. More on the chain rule

(1) Suppose f, g are differentiable functions with $f(g(x))=x^{3}$. Suppose that $f^{\prime}(g(4))=5$. Find $g^{\prime}(4)$.

Solution: Applying the chain rule we have $f^{\prime}(g(x)) \cdot g^{\prime}(x)=3 x^{2}$. Plugging in $x=4$ we get $5 g^{\prime}(4)=3 \cdot 4^{2}$ and hence $g^{\prime}(4)=\frac{48}{5}$.

2. Inverse functions

(1) Find the function inverse to $y=x^{7}+3$.

Solution: If $y=x^{7}+3$ then $x^{7}=y-3$ so $x=(y-3)^{1 / 7}$, and the inverse function is $y=(x-3)^{1 / 7}$.
(2) Does $y=x^{2}$ have an inverse?

Solution: Not on its full domain (not single-valued), yes on $[0, \infty)$.
(3) Consider the function $y=\sqrt{x-1}$ on $x \geq 1$.
(a) Find the inverse function, in the form $x=g(y)$.

Solution: If $y=\sqrt{x-1}$ then $y^{2}=x-1$ so $x=y^{2}+1$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d} x}{\mathrm{~d} y}$ and calculate their product.

Solution: We have $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x-1}}$ and $\frac{\mathrm{d} x}{\mathrm{~d} y}=2 y$. Their product is $\frac{2 y}{2 \sqrt{x-1}}=\frac{y}{\sqrt{x-1}}=1$ since $y=\sqrt{x-1}$ along the curves.

3. The inverse function fule

(1) Given that $\frac{\mathrm{d}}{\mathrm{d} y} y^{2}=2 y$, find $\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}$.

Solution: If $y=\sqrt{x}$ then $x=y^{2}$ so $\frac{\mathrm{d} x}{\mathrm{~d} y}=2 y=2 \sqrt{x}$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$ so the derivative of \sqrt{x} is $\frac{1}{2 \sqrt{x}}$.
(2) Find $\frac{\mathrm{d}}{\mathrm{d} x} \arcsin x$.

Solution: Suppose $\theta=\arcsin x$. Then $x=\sin \theta$ so $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\cos \theta$ so $\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{1}{\cos \theta}$ so $\frac{d \arcsin x}{\mathrm{~d} x}=$ $\frac{1}{\sqrt{1-\sin ^{2} \theta}}=\frac{1}{\sqrt{1-x^{2}}}$.
(3) Find $\frac{\mathrm{d}}{\mathrm{d} x} \log x$.

Solution: If $y=\log x$ then $x=e^{y}$, so $\frac{\mathrm{d} x}{\mathrm{~d} y}=e^{y}$ so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{e^{y}}=\frac{1}{x}$.
(4) (Derivatives and logarithms)
(a) Differentiate $\log \sqrt[k]{t}$.

Solution: $\quad \log \sqrt[k]{t}=\log t^{1 / k}=\frac{1}{k} \log t$ so the derivative is $\frac{1}{k t}$. We can also use the chain rule:

$$
\frac{\mathrm{d} \log t^{1 / k}}{\mathrm{~d} t}=\frac{1}{t^{1 / k}} \cdot \frac{1}{k} t^{\frac{1}{k}-1}=\frac{1}{k t} .
$$

(b) (Final, 2012) Let $y=\log (\sin (\log x))$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

Solution: By the chain rule this is $\frac{1}{\sin (\log x)} \cdot \cos (\log x) \cdot \frac{1}{x}=\frac{\cos (\log x)}{x \sin (\log x)}$.

