Math 100 - SOLUTIONS TO WORKSHEET 7 TRIGONOMETRIC FUNCTIONS; THE CHAIN RULE

1. Trigonometric Functions

(1) (Special values) What is $\sin \frac{\pi}{3}$? What is $\cos \frac{5 \pi}{2}$?

Solution: $\quad \sin \frac{\pi}{3}=\frac{1}{2}, \cos \left(\frac{5 \pi}{2}\right)=\cos \left(\frac{\pi}{2}+2 \pi\right)=\cos \left(\frac{\pi}{2}\right)=0$.
(2) Derivatives of trig functions
(a) Interpret $\lim _{h \rightarrow 0} \frac{\sin h}{h}$ as a derivative and find its value.

Solution: This is $\lim _{h \rightarrow 0} \frac{\sin (0+h)-\sin 0}{h}=\left.\frac{d \sin x}{d x}\right|_{x=0}=\cos 0=1$.
(b) Differentiate $\tan \theta=\frac{\sin \theta}{\cos \theta}$.

Solution: Applying the quotient rule we get

$$
\begin{aligned}
\frac{\mathrm{d} \tan \theta}{\mathrm{~d} \theta} & =\frac{\cos \theta \cdot \cos \theta-\sin \theta \cdot(-\cos \theta)}{\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
\end{aligned}
$$

We also have

$$
\frac{\mathrm{d} \tan \theta}{\mathrm{~d} \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=1+\tan ^{2} \theta
$$

which is sometimes useful.
(c) What is the equation of the line tangent the graph $y=T \sin x+\cos x$ at the point where $x=\frac{\pi}{4}$?

Here T is a parameter (=constant).
Solution: We have $y\left(\frac{\pi}{4}\right)=\frac{T}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{T+1}{\sqrt{2}}$. Also, $\frac{\mathrm{d} y}{\mathrm{~d} x}=T \cos x-\sin x$ so $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=\frac{\pi}{4}}=\frac{T}{\sqrt{2}}-\frac{1}{\sqrt{2}}=$ $\frac{T-1}{\sqrt{2}}$. So the line is

$$
y=\frac{T-1}{\sqrt{2}}\left(x-\frac{\pi}{4}\right)+\frac{T+1}{\sqrt{2}} .
$$

2. The Chain Rule

(1) Write the function as a composition and then differentiate.
(a) $e^{3 x}$

Solution: This is $f(g(x))$ where $g(x)=3 x$ and $f(y)=e^{x}$. The derivative is thus

$$
e^{3 x} \cdot \frac{\mathrm{~d}(3 x)}{\mathrm{d} x}=3 e^{3 x}
$$

(b) $\sqrt{2 x+1}$

Solution: This is $f(g(x))$ where $g(x)=2 x+1$ and $f(y)=\sqrt{y}$. Thus

$$
\frac{\mathrm{d} f(g(x))}{\mathrm{d} x}=f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{2 \sqrt{g}} \cdot 2=\frac{1}{\sqrt{2 x+1}} .
$$

(c) (Final, 2015) $\sin \left(x^{2}\right)$

Solution: This is $f(g(x))$ where $g(x)=x^{2}$ and $f(y)=y^{2}$. The derivative is then

$$
\cos \left(x^{2}\right) \cdot 2 x=2 x \cos \left(x^{2}\right) .
$$

(d) $(7 x+\cos x)^{n}$.

Solution: This is $f(g(x))$ where $g(x)=7 x+\cos x$ and $f(y)=y^{n}$. The derivative is thus

$$
n(7 x+\cos x)^{n-1} \cdot(7-\sin x)
$$

(2) Differentiate
(a) $7 x+\cos \left(x^{n}\right)$

Solution: We apply linearity and then the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(7 x+\cos \left(x^{n}\right)\right) & =\frac{\mathrm{d}(7 x)}{\mathrm{d} x}+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d} x} \\
& =7+\frac{\mathrm{d} \cos \left(x^{n}\right)}{\mathrm{d}\left(x^{n}\right)} \cdot \frac{\mathrm{d}\left(x^{n}\right)}{\mathrm{d} x} \\
& =7-\sin \left(x^{n}\right) \cdot n x^{n-1} .
\end{aligned}
$$

(b) $e^{\sqrt{\cos x}}$

Solution: We repeatedly apply the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} e^{\sqrt{\cos x}} & =e^{\sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \sqrt{\cos x} \\
& =e^{\sqrt{\cos x}} \frac{1}{2 \sqrt{\cos x}} \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x \\
& =-e^{\sqrt{\cos x}} \frac{\sin x}{2 \sqrt{\cos x}}
\end{aligned}
$$

(c) (Final 2012) $e^{(\sin x)^{2}}$

Solution: By the chain rule:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{(\sin x)^{2}}\right) & =e^{(\sin x)^{2}} \frac{\mathrm{~d}}{\mathrm{~d} x}\left((\sin x)^{2}\right) \\
& =e^{(\sin x)^{2}} 2 \sin x \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x \\
& =e^{(\sin x)^{2}} 2 \sin x \cos x \\
& =e^{(\sin x)^{2}} \sin (2 x)
\end{aligned}
$$

