# Math 100 - WORKSHEET 6 POLYNOMIALS AND EXPONENTIALS 

## 1. Direct problems

(1) If $f, g$ are functions and $a, b$ are numbers then $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$,
(2) $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$,
$\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$,
(3) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{r}\right)=r x^{r-1}$,
(4) $\frac{\mathrm{d}}{\mathrm{d} x}\left(e^{x}\right)=e^{x}$.
(1) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$
(b) (Final, 2016) $f(x)=x^{2} e^{x}$ (also try $x^{a} e^{x}$ )
(c) (Final, 2016) $f(x)=\frac{x^{2}+3}{2 x-1}$
(d) $f(x)=\frac{\sqrt{x}(1-3 x)}{x^{2}+1}$
(e) $f(x)=\frac{x^{2}+x e^{x}}{\cos x+\sin x}$

## 2. Exponentials

(1) Simplify $\left(e^{5}\right)^{3},\left(2^{1 / 3}\right)^{12}, 7^{3-5}$.
(2) Differentiate:
(a) $10^{x}$
(b) $\frac{5 \cdot 10^{x}+x^{2}}{3^{x}+1}$

## 3. Tangent Lines

(1) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$. Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.
(2) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.
(3) Find the lines of slope 3 tangent the curve $y=x^{3}+4 x^{2}-8 x+3$.
(4) Let $f(x)=\frac{g(x)}{x}$, where $g(x)$ is differentiable at $x=1$. The line $y=2 x-1$ is tangent to the graph $y=f(x)$ at $x=1$. Find $g(1)$ and $g^{\prime}(1)$.
(5) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?

