Math 100 - SOLUTIONS TO WORKSHEET 6 POLYNOMIALS AND EXPONENTIALS

1. Direct problems

(1) Differentiate
(a) $f(x)=6 x^{\pi}+2 x^{e}-x^{7 / 2}$

Solution: This is a linear combination of power laws so $f^{\prime}(x)=6 \pi x^{\pi-1}+2 e x^{e-1}-\frac{7}{2} x^{7 / 2}$.
(b) (Final, 2016) $f(x)=x^{2} e^{x}$ (also try $x^{a} e^{x}$)

Solution: Applying the product rule we get $\frac{d f}{d x}=\frac{d\left(x^{2}\right)}{d x} \cdot e^{x}+x^{2} \cdot \frac{d\left(e^{x}\right)}{d x}=\left(2 x+x^{2}\right) e^{x}=$ $x(x+2) e^{x}$, and in general

$$
\frac{d}{d x}\left(x^{a} e^{x}\right)=a x^{a-1} e^{x}+x^{a} e^{x}=x^{a-1}(x+a) e^{x} .
$$

(c) (Final, 2016) $f(x)=\frac{x^{2}+3}{2 x-1}$

Solution: Applying the quotient rule the derivative is $\frac{2 x \cdot(2 x-1)-\left(x^{2}+3\right) \cdot 2}{(2 x-1)^{2}}=\frac{4 x^{2}-2 x-2 x^{2}-6}{(2 x-1)^{2}}=$ $2 \frac{x^{2}-x-3}{(2 x-1)^{2}}$.
(d) $f(x)=\frac{\sqrt{x}(1-3 x)}{x^{2}+1}$

Solution: We apply the quotient rule to $f(x)=\frac{x^{1 / 2}-3 x^{3 / 2}}{x^{2}+1}$ to get:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(\frac{1}{2} x^{-1 / 2}-\frac{9}{2} x^{1 / 2}\right)\left(x^{2}+1\right)-\left(x^{1 / 2}-3 x^{3 / 2}\right) 2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{(1-9 x)\left(x^{2}+1\right)-2\left(2 x-6 x^{2}\right) x}{2 \sqrt{x}\left(x^{2}+1\right)^{2}} \\
& =\frac{3 x^{3}-3 x^{2}-9 x+1}{2 \sqrt{x}\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(e) $f(x)=\frac{x^{2}+x e^{x}}{\cos x+\sin x}$

Solution: Apply the quotient and product rules.

$$
f^{\prime}(x)=\frac{\left(2 x+e^{x}+x e^{x}\right)(\cos x+\sin x)-\left(x^{2}+x e^{x}\right)(\cos x-\sin x)}{(\cos x+\sin x)^{2}} .
$$

2. Exponentials

(1) Simplify $\left(e^{5}\right)^{3},\left(2^{1 / 3}\right)^{12}, 7^{3-5}$.

Solution: $\left(e^{5}\right)^{3}=e^{5 \cdot 3}=e^{15},\left(2^{1 / 3}\right)^{12}=2^{\frac{1}{3} \cdot 12}=2^{4}=16,7^{3-5}=7^{-2}=\frac{1}{49}$.
(2) Differentiate:
(a) 10^{x}

Solution: This is $(\log 10) \cdot 10^{x}$.
(b) $\frac{5 \cdot 10^{x}+x^{2}}{3^{x}+1}$

Solution: By the quotient rule this is

$$
\frac{\left(5 \log 10 \cdot 10^{x}+2 x\right)\left(3^{x}+1\right)-\left(5 \cdot 10^{x}+x^{2}\right) \log 3 \cdot 3^{x}}{\left(3^{x}+1\right)^{2}}
$$

3. Tangent lines

(1) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$. Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

Solution: $\quad(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1 \cdot 4=10$.

$$
\left(\frac{f}{g}\right)^{\prime}(1)=\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2}
$$

(2) (Final, 2015) Find the equation of the line tangent to the function $f(x)=\sqrt{x}$ at $(4,2)$.

Solution: $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so the slope of the line is $f^{\prime}(4)=\frac{1}{4}$, and the equation for the line line itself is $y-2=\frac{1}{4}(x-4)$ or $y=\frac{1}{4}(x-4)+2$ or $y=\frac{1}{4} x+1$.
(3) Find the lines of slope 3 tangent the curve $y=x^{3}+4 x^{2}-8 x+3$.

Solution: $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+8 x-8$, so the line tangent at (x, y) has slope 3 iff $3 x^{2}+8 x-8=3$, that is iff $3\left(x^{2}-1\right)+8(x-1)=0$. We can factor this as $(x-1)(3 x+11)=0$ so the x-coordinates of the points of tangency are $1,-\frac{11}{3}$ and the lines are:

$$
\begin{aligned}
& y=3(x-1) \\
& y=3\left(x+\frac{11}{3}\right)+\left(\left(\frac{11}{3}\right)^{3}+4\left(\frac{11}{3}\right)^{2}-8\left(\frac{11}{3}\right)+3\right)
\end{aligned}
$$

(4) Let $f(x)=\frac{g(x)}{x}$, where $g(x)$ is differentiable at $x=1$. The line $y=2 x-1$ is tangent to the graph $y=f(x)$ at $x=1$. Find $g(1)$ and $g^{\prime}(1)$.

Solution: At $x=1$ the line meets the graph of $y=f(x)$ so $2 \cdot 1-1=1=f(1)=\frac{g(1)}{1}$ and we concldue that $g(1)=1$. The slope of the line there is 2 , so $f^{\prime}(1)=2$. Since we have

$$
f^{\prime}(x)=\frac{x g^{\prime}(x)-g(x) x}{x^{2}}
$$

we have $2=f^{\prime}(1)=g^{\prime}(1)-g(1)$ so $g^{\prime}(1)=2+g(1)=3$.
(5) (Final 2015) The line $y=4 x+2$ is tangent at $x=1$ to which function: $x^{3}+2 x^{2}+3 x, x^{2}+3 x+2$, $2 \sqrt{x+3}+2, x^{3}+x^{2}-x, x^{3}+x+2$, none of the above?

Solution: The line has slope 4 and meets the curve at $(1,6)$. The last two functions don't evaluate to 6 at 1.We differentiate the first three.

$$
\begin{aligned}
\left.\frac{d}{d x}\right|_{x=1}\left(x^{3}+2 x^{2}+3 x\right) & =\left.\left(3 x^{2}+4 x+3\right)\right|_{x=1}=10 \\
\left.\frac{d}{d x}\right|_{x=1}\left(x^{2}+3 x+2\right) & =\left.(2 x+3)\right|_{x=1}=5 \\
\left.\frac{d}{d x}\right|_{x=1}(2 \sqrt{x+3}+2) & =\left.\left(\frac{2}{2 \sqrt{x+3}}\right)\right|_{x=1}=\frac{1}{2} .
\end{aligned}
$$

The answer is "none of the above".

