Math 100 - SOLUTIONS TO WORKSHEET 5 THE DERIVATIVE

1. Linear combinations; power laws
(1) If f, g are functions and a, b are numbers then $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$
$\begin{array}{ll}\text { (2) } \frac{\mathrm{d}}{\mathrm{d} x}\left(x^{r}\right)=r x^{r-1} & \text { (3) } \frac{\mathrm{d}}{\mathrm{d} x}\left(e^{x}\right)=e^{x} \text {. }\end{array}$
(1)
(a) Differentiate $f(x)=\frac{5 x^{3}-2 x+1}{\sqrt{x}}$.

Solution: Write $f(x)=5 x^{5 / 2}-2 x^{1 / 2}+x^{-1 / 2}$ and then $f^{\prime}(x)=\frac{25}{2} x^{3 / 2}-x^{-1 / 2}-\frac{1}{2} x^{-3 / 2}$.
(b) Let $g(x)=A x^{5 / 2}+x^{2}$. Suppose that $g^{\prime}(4)=0$. What is A ?

Solution: Differentiating we find $g^{\prime}(x)=\frac{5}{2} A x^{3 / 2}+2 x$, so $0=g^{\prime}(4)=\frac{5}{2} A \cdot 4^{3 / 2}+2 \cdot 4=$ $\frac{5}{2} \cdot A \cdot 8+8$. This means: $20 A+8=0$ so $A=-\frac{2}{5}$.
(2) Find the second derivative of
(a) $5 e^{x}$
(b) $\sqrt{x}+5 e^{x}$

Solution: $\quad \frac{d}{d x}\left(5 e^{x}\right)=5 \frac{d}{d x}\left(e^{x}\right)=5 e^{x}$ so the second derivative is also the same. Also, $(\sqrt{x})^{\prime \prime}=$ $\left(\frac{1}{2} x^{-1 / 2}\right)^{\prime}=-\frac{1}{4} x^{-3 / 2}$ so by linearity the second derivative of $\sqrt{x}+5 e^{x}$ is $5 e^{x}-\frac{1}{4 x^{3 / 2}}$.
(3) The line $y=5 x+B$ is tangent to the curve $y=x^{3}+2 x$. What is B ?

Solution: At the point (x, y) the curve has slope $\frac{d y}{d x}=3 x^{2}+2$, so the curve has slope 5 at the points where $x= \pm 1$, that is the points $(-1,-3)$ and $(1,3)$. The line needs to meet the curve at the point, so there are two solutions:

$$
\begin{array}{ll}
y=5 x+2 & (\text { tangent at }(-1,-3)) \\
y=5 x-2 & (\text { tangent at }(1,3))
\end{array}
$$

2. The product and quotient rules

Fact. $(f g)^{\prime}=f^{\prime} g+f g^{\prime},\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
(1) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{a} e^{x}\right)$.

Solution: We have $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{a} e^{x}\right)=\left(\frac{\mathrm{d}}{\mathrm{d} x} x^{a}\right) e^{x}+x^{a}\left(\frac{\mathrm{~d}}{\mathrm{~d} x} e^{x}\right)=a x^{a-1} e^{x}+x^{a} e^{x}$.
(2) Suppose that $f(1)=1, g(1)=2, f^{\prime}(1)=3, g^{\prime}(1)=4$. Find $(f g)^{\prime}(1)$ and $\left(\frac{f}{g}\right)^{\prime}(1)$.

Solution: $\quad(f g)^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=3 \cdot 2+1 \cdot 4=10$.

$$
\left(\frac{f}{g}\right)^{\prime}(1)=\frac{f^{\prime}(1) g(1)-f(1) g^{\prime}(1)}{(g(1))^{2}}=\frac{3 \cdot 2-1 \cdot 4}{2^{2}}=\frac{1}{2} .
$$

(3) $f(x)=\frac{x^{2}+A}{\sqrt{x}} \cdot f^{\prime}(x)=$

Solution: $\quad f(x)=x^{3 / 2}+A x^{-1 / 2}$ so $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}-\frac{A}{2} x^{-3 / 2}$.
(4) Let $f(x)=\frac{x}{\sqrt{x}+A}$. Given that $f^{\prime}(4)=\frac{3}{16}$, give a quadratic equation for A.

Solution: $\quad f^{\prime}(x)=\frac{1 \cdot(\sqrt{x}+A)-x\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x}+A)^{2}}=\frac{\sqrt{x}+A-\frac{1}{2} \sqrt{x}}{(\sqrt{x}+A)^{2}}=\frac{\frac{1}{2} \sqrt{x}+A}{(\sqrt{x}+A)^{2}}$. Plugging in $x=4$ we have

$$
\frac{3}{16}=f^{\prime}(4)=\frac{1+A}{(2+A)^{2}}
$$

so we have

$$
3(2+A)^{2}=16(1+A)
$$

that is

$$
3 A^{2}+12 A+12=16+16 A
$$

that is

$$
3 A^{2}-4 A-4=0
$$

In fact this gives $A=-\frac{2}{3}, 2$.

